首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   12篇
  145篇
  2022年   1篇
  2021年   3篇
  2020年   7篇
  2017年   3篇
  2016年   1篇
  2015年   5篇
  2014年   7篇
  2013年   5篇
  2012年   6篇
  2011年   5篇
  2010年   10篇
  2009年   11篇
  2008年   6篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   6篇
  2000年   1篇
  1999年   2篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   7篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1978年   1篇
  1977年   3篇
  1976年   1篇
  1972年   2篇
  1969年   1篇
  1966年   1篇
  1897年   1篇
排序方式: 共有145条查询结果,搜索用时 15 毫秒
101.
The ability of a human B-cell lymphoma cell line to grow subcutaneously as tumors in nude mice was investigated. The effect of pretreating mice with cyclophosphamide or whole-body irradiation (WBI) was compared with no pretreatment of the mice. Both methods of pretreatment resulted in a higher tumor implantation rate, compared with that for non-pretreated controls. In mice that underwent WBI-pretreatment, a tumor implantation rate of 100% was observed, whereas mice pretreated with cyclophosphamide had a tumor implantation rate of 80%. In non-pretreated control mice, an implantation rate of only 50% was observed. Three weeks after injection, tumor size was significantly larger in mice of the pretreated groups, compared with that in mice of the group that did not receive pretreatment. Furthermore, particularly in the group pretreated with WBI, the tumors grew more synchronously, compared with tumors in the control group. Results of this study indicate that pretreatment with cyclophosphamide or WBI improves the tumor implantation rate of Ramos cells in nude mice, providing a workable animal model for studying human B-cell lymphoma.  相似文献   
102.
103.
Facial neuromuscular dysfunction severely impacts adaptive and expressive behavior and emotional health. Appropriate treatment is aided by quantitative and efficient assessment of facial motion impairment. We validated a newly developed method of quantifying facial motion, automated face analysis (AFA), by comparing it with an established manual marking method, the Maximal Static Response Assay (MSRA). In the AFA, motion of facial features is tracked automatically by computer vision without the need for placement of physical markers or restrictions of rigid head motion. Nine patients (seven women and two men) with a mean age of 39.3 years and various facial nerve disorders (five with Bell's palsy, three with trauma, and one with tumor resection) participated. The patients were videotaped while performing voluntary facial action tasks (brow raise, eye closure, and smile). For comparison with MSRA, physical markers were placed on facial landmarks. Image sequences were digitized into 640 x 480 x 24-bit pixel arrays at 30 frames per second (1 pixel congruent with0.3 mm). As defined for the MSRA, the coordinates of the center of each marker were manually recorded in the initial and final digitized frames, which correspond to repose and maximal response. For the AFA, these points were tracked automatically in the image sequence. Pearson correlation coefficients were used to evaluate consistency of measurement between manual (the MSRA) and automated (the AFA) tracking methods, and paired t tests were used to assess the mean difference between methods for feature tracking. Feature measures were highly consistent between methods, Pearson's r = 0.96 or higher, p < 0.001 for each of the action tasks. The mean differences between the methods were small; the mean error between methods was comparable to the error within the manual method (less than 1 pixel). The AFA demonstrated strong concurrent validity with the MSRA for pixel-wise displacement. Tracking was fully automated and provided motion vectors, which may be useful in guiding surgical and rehabilitative approaches to restoring facial function in patients with facial neuromuscular disorders.  相似文献   
104.
105.
106.
107.
108.
Deep tissue injury (DTI) is a severe form of pressure ulcer where tissue damage starts in deep tissues underneath intact skin. In the present study, the contributions of deformation, ischemia, and reperfusion to skeletal muscle damage development were examined in a rat model during a 6-h period. Magnetic resonance imaging (MRI) was used to study perfusion (contrast-enhanced MRI) and tissue integrity (T2-weighted MRI). The levels of tissue deformation were estimated using finite element models. Complete ischemia caused a gradual homogeneous increase in T2 (~20% during the 6-h period). The effect of reperfusion on T2 was highly variable, depending on the anatomical location. In experiments involving deformation, inevitably associated with partial ischemia, a variable T2 increase (17-66% during the 6-h period) was observed reflecting the significant variation in deformation (with two-dimensional strain energies of 0.60-1.51 J/mm) and ischemia (50.8-99.8% of the leg) between experiments. These results imply that deformation, ischemia, and reperfusion all contribute to the damage process during prolonged loading, although their importance varies with time. The critical deformation threshold and period of ischemia that cause muscle damage will certainly vary between individuals. These variations are related to intrinsic factors, such as pathological state, which partly explain the individual susceptibility to the development of DTI and highlight the need for regular assessments of individual subjects.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号