首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   24篇
  国内免费   1篇
  272篇
  2022年   6篇
  2021年   6篇
  2018年   8篇
  2017年   3篇
  2015年   10篇
  2014年   9篇
  2013年   11篇
  2012年   13篇
  2011年   11篇
  2010年   6篇
  2009年   14篇
  2008年   10篇
  2007年   8篇
  2006年   6篇
  2005年   4篇
  2004年   7篇
  2003年   6篇
  2002年   2篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   10篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1990年   3篇
  1989年   2篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   6篇
  1982年   4篇
  1981年   3篇
  1978年   3篇
  1977年   4篇
  1976年   4篇
  1975年   6篇
  1974年   5篇
  1973年   4篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1966年   2篇
  1962年   2篇
  1961年   2篇
排序方式: 共有272条查询结果,搜索用时 15 毫秒
21.
In DNA library screening, blood testing, and monoclonal antibody generation, significant savings in the number of assays can be realized by employing group sampling. Practical considerations often limit the number of stages of group testing that can be performed. We address situations in which only two stages of testing are used. We define efficiency to be the expected number of positives isolated per assay performed and assume gold-standard tests with unit sensitivity and specificity. Although practical tests never are golden, polymerase chain reaction (PCR) methods provide procedures for screening recombinant libraries that are strongly selective yet retain high sensitivity even when samples are pooled. Also, results for gold-standard tests serve as bounds on the performance of practical testing procedures. First we derive formulas for the efficiency of certain extensions of the popular rows-and-columns technique. Then we derive an upper bound on the efficiency of any two-stage strategy that lies well below the classical upper bound for situations with no constraint on the number of stages. This establishes that a restriction to only two stages necessitates performing many more assays than efficient multistage procedures need. Next, we specialize the bound to cases in which each item belonging only to pools that tested positive in stage 1 must be tested individually in stage 2. The specialized bound for such positive procedures is tight because we show that an appropriate multidimensional extension of the rows-and-columns technique achieves it. We also show that two-stage positive procedures in which the stage-1 groups are selected at random perform suboptimally, thereby establishing that efficient tests must be structured carefully.  相似文献   
22.
23.
Rat brain hsc70 is a constitutively expressed member of the 70-kDa family of heat shock proteins that is capable of bidirectional transport across the nuclear envelope when microinjected into Xenopus oocytes [1]. The objective of this study was to identify domains involved in its bidirectional transport. Limited proteolytic digestion with chymotrypsin generated three major truncated proteins of approximately 67.5, 59.5, and 56.5 kDa. Reactivity with NH2-terminal-specific antibodies showed that carboxyl-terminal fragments were removed. Nuclear uptake studies were performed by microinjecting 125I-labeled proteins into the cytoplasm and determining their subsequent nucleocytoplasmic distribution. The accumulation rates, while faster than bovine serum albumin controls, were inversely related to the size of the truncated proteins and greatly reduced compared to undigested hsc70. Nuclear efflux was assayed by microinjecting labeled proteins directly into oocyte nuclei. The relative efflux rates of the truncated polypeptides were less than the undigested protein, and, as observed for uptake, were inversely related to size. These results indicate that the carboxyl-terminal domain of hsc70 is involved in its bidirectional exchange.  相似文献   
24.
Several metrics from nonlinear dynamics and statistical mechanics have been characterized on computer-generated number series with various signal-to-noise ratios, demonstrating their individual reliability as a function of sample size and their relationships to each other. The root mean square (RMS) evaluates amplitude, and the power spectral density (PSD) provides a visual display of the frequency spectrum; both measures have very high reliability even for an N as low as 50. The Fractal Dimension (D) is shown to converge rapidly and also to be reliable when N is as low as 50. These three measures (RMS, PSD, and D) have been applied to the complex kinetics of tyrosine hydroxylase time courses (50-point curves) at various BH4 concentrations (near physiological, but far from equilibrium levels). Recently developed measures of spectral entropy and the Liapunov Exponent, -lambda are also characterized.  相似文献   
25.
26.
Protein tyrosine phosphorylation has been implicated in several aspects of neurite outgrowth regulation. To address specific roles in early neuronal morphogenesis, hippocampal neurons in culture were treated with the tyrosine phosphatase inhibitor orthovanadate. This treatment completely suppressed axon formation, yet enhanced formation of minor neurites. The inhibition of axonogenesis was dose dependent and occurred in parallel with a marked increase in cellular phosphotyrosine immunoreactivity, which was especially concentrated within neuritic growth cones and showed partial colocalization with f-actin. Both the blockade of axonogenesis and the elevation of phosphotyrosine were completely reversible. An additional and unexpected effect of orthovanadate was the appearance of many binucleate neurons. Immunoblotting experiments using a phosphotyrosine-specific antibody revealed an orthovanadate-induced reversible hyperphosphorylation of several protein bands, especially of two at 115 and 125 kD. These data suggest a potentially important role for tyrosine phosphatases and their phosphoprotein substrates in axonogenesis. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 17–28, 1998  相似文献   
27.
N-Bromosuccinimide completely inactivated the cellulase, and titration experiments showed that oxidation of one tryptophan residue per cellulase molecule coincided with 100% inactivation. CM-cellulose protected the enzyme from inactivation by N-bromosuccinimide. The cellulase was inhibited by active benzyl halides, and reaction with 2-hydroxy-5-nitrobenzyl bromide resulted in the incorporation of 2.3 hydroxy-5-nitrobenzyl groups per enzyme molecule; one tryptophan residue was shown to be essential for activity. Diazocarbonyl compounds in the presence of Cu2+ ions inhibited the enzyme. The pH-dependence of inactivation was consistent with the reaction occurring with a protonated carboxyl group. Carbodi-imide inhibited the cellulase, and kinetic analysis indicated that there was an average of 1 mol of carbodi-imide binding to the cellulase during inactivation. Treatment of the cellulase with diethyl pyrocarbonate resulted in the modification of two out of the four histidine residues present in the cellulase. The modified enzyme retained 40% of its original activity. Inhibition of cellulase activity by the metal ions Ag+ and Hg2+ was ascribed to interaction with tryptophan residues, rather than with thiol groups.  相似文献   
28.
29.
30.
The hypersensitive response (HR) is a cell death phenomenon associated with localized resistance to pathogens. Biphasic patterns in the generation of H2O2, salicylic acid and ethylene have been observed in tobacco during the early stages of the HR. These biphasic models reflect an initial elicitation by pathogen-associated molecular patterns followed by a second phase, induced by pathogen-encoded avirulence gene products. The first phase has been proposed to potentiate the second, to increase the efficacy of plant resistance to disease. This potentiation is comparable to the “priming” of plant defenses which is seen when plants display systemic resistance to disease. The events regulating the generation of the biphasic wave, or priming, remains obscure, however recently we demonstrated a key role for nitric oxide in this process in a HR occurring in tobacco. Here we use laser photoacoustic detection to demonstrate that biphasic ethylene production also occurs during a HR occurring in Arabidopsis. We suggest that ethylene emanation during the HR represents a ready means of visualising biphasic events during the HR and that exploiting the genomic resources offered by this model species will facilitate the development of a mechanistic understanding of potentiating/priming processes.Key words: hypersensitive response, biphasic patterns, potentiation, defense priming, ethylene, ArabidopsisThe Hypersensitive Response (HR) is a cell death process which occurs at the site of attempted pathogen attack and which has been associated with host resistance.1 Much work on the regulation of the HR has indicated the importance of H2O2,2 and NO.3 A feature of H2O2 generation during the HR is its biphasic pattern (Fig. 1A). The first rise reflects elicitation by pathogen-associated molecular patterns (PAMPs)4 and the second reflects the interaction between a pathogen-encoded avirulence (avr) gene product with a plant resistance (R) gene. A key aspect of the first rise is the initiation of salicylic acid (SA) synthesis which potentiates the second rise and hence the potency of plant defense and the HR.5Open in a separate windowFigure 1Patterns of defense signal generation during the Pseudomonas syringae pv. phaseolicola elicited-hypersensitive response in tobacco (Nicotiana tabacum). Generation of (A) H2O2 (●, Mur18); (B) nitric oxide (◇; Mur12 (C) salicylic acid (SA, ■19) and (D) ethylene (○ Mur9) during a HR elicited by Pseudomonas syringae pv. phaseolicola (Psph) in tobacco cv. Samsun NN. In (A) a phase where SA acts to augment the second rise in H2O2—the potentiation phase—is highlighted. The potentiation phase is likely to be similar to defense “priming”.6 Methodological details are contained within the appropriate references. (E) A possible model for biphasic defense signal regulation during the Psph-elicited HR in tobacco. During an initial phase NO and H2O2 act to initiate SA biosynthesis, where SA and NO act to initiate a “H2O2 biphasic switch”. This could initially suppress both SA and the H2O2 generation but subsequently acts to potentiate a second phase of H2O2 generation. This in turn increases SA biosynthesis which could act with NO to initiate the “C2H4 biphasic switch” to potentiate ethylene production. These (and other) signals contribute to initiation of the HR and SAR.This potentiation mechanism appears to be similar to defense priming; when whole plants display systemic resistance to disease as opposed to a localized resistance against pathogens. Priming can be initiated (the “primary stimulus”) following attack with a necrotizing pathogen (leading to “systemic acquired resistance”, SAR) or non-pathogenic rhizosphere bacteria (to confer “induced systemic resistance”, ISR). In the primed state a plant stimulates a range of plant defense genes, produces anti-microbial phytoalexins and deposits cell wall strengthening molecules, but only on imposition of a “secondary stimulus”.6 Such secondary stimuli include SA3 or PAMPs7 and is likely to be mechanistically similar to the potentiation step in the biphasic pattern of H2O2 generation (shaded in Fig. 1A). Accordingly, the two phases in the biphasic wave represent primary and secondary stimuli in priming.Highlighting a similarity between local HR-based events and priming, adds further impetus to efforts aiming to describe the underlying mechanism(s), however both phenomena remain poorly understood. Besides SA, both jasmonates and abscisic acid (ABA) have been shown to prime defenses as have a range of non-plant chemicals, with β-aminobutyric acid (BABA) being perhaps most widely used.6,8 Mutants which fail to exhibit BABA-mediated potentiation were defective in either a cyclin-dependent kinase-like protein, a polyphosphoinositide phosphatase or an ABA biosynthetic enzyme.8We have recently investigated biphasic ethylene production during the HR in tobacco elicited by the nonhost HR-eliciting bacterial pathogen Pseudomonas syringae pv. phaseolicola.9 As with H2O2 generation, this pattern reflected PAMP-and AVR-dependent elicitation events and included a SA-mediated potentiation stage. Crucially, we also showed that NO was a vital component in the SA-potentiation mechanism. When this finding is integrated with our other measurements of defense signal generation in the same host-pathogen system the complexity in the signaling network is revealed (Fig. 1). NO generation (Fig. 1B) appeared to be coincident with the first rise in H2O2 (Fig. 1A) which initiated SA biosynthesis10,11 and together would contribute to the first small, but transient, rise in that hormone (Fig. 1C). In line with established models5 this momentary rise in SA coincides with the potentiation phase (shaded in Fig. 1A) required to augment the second rise in ROS. However, ethylene production seems to be correlated poorly with the patterns of NO, H2O2 and SA (Fig. 1D). Nevertheless, biphasic ethylene production was found to reflect PAMP and AVR-dependent recognition and included a SA-mediated potentiation step.9 Hence, ethylene production could be used as a post-hoc indicator of the potentiation mechanism. Therefore, our discovery that the second wave of ethylene production—a “biphasic switch”—is influenced by NO acting with SA could also be relevant to the H2O2 generation. Significantly, the second phases in both H2O2 and ethylene production occur exactly where SA and NO production coincides; in the case of H2O2 generation 2–4 h post challenge and with ethylene 6 h onwards (Fig. 1E).Thus, ethylene production represents a readily assayable marker to indicate perturbations in the underlying biphasic and possible priming mechanisms. As we have demonstrated, laser photoacoustic detection (LAPD) is a powerful on-line approach to determine in planta ethylene production in tobacco9,12 but any mechanistic investigations would be greatly facilitated if the genetic resources offered by the model species Arabidopsis could be exploited.To address this, Arabidopsis Col-0 rosettes were vacuum infiltrated with either Pseudomonas syringae pv. tomato (Pst) avrRpm1 (HR-eliciting), the virulent Pst strain and the non-HR eliciting and non-virulent Pst hrpA strain. Ethylene production was monitored by LAPD (Fig. 2A). Significantly, Pst avrRpm1 initiated a biphasic pattern of ethylene production whose kinetics were very similar to that seen in tobacco (compare Figs. 2A with with1D).1D). Inoculations with Pst and Pst hrpA only displayed the first PAMP-dependent rise in ethylene production. Thus, these data establish that Arabidopsis can be used to investigate biphasic switch mechanism(s) in ethylene production during the HR and possibly defense priming. When considering such mechanisms, it is relevant to highlight the work of Foschi et al.13 who observed that biphasic activation of a monomeric G protein to cause phase-specific activation of different kinase cascades. Interestingly, ethylene has been noted to initiate biphasic activation of G proteins and kinases in Arabidopsis, although differing in kinetics to the phases seen during the HR.14 Further, plant defense priming has been associated with the increased accumulation of MAP kinase protein.6Open in a separate windowFigure 2Ethylene in the Pseudomonas syringae pv. tomato elicited-hypersensitive response in Arabidopsis thaliana. (A) Ethylene production from 5 week old short day (8 h light 100 µmol.m2.sec−1) grown Arabidopsis rosette leaves which were vacuum infiltrated with bacterial suspensions (2 × 106 colony forming units.ml−1) of Pseudomonas syringae pv. tomato (Pst) strains detected using laser photoacoustic detection (LAPD). Experimental details of the ethylene detection by LAPD are detailed in Mur et al.9 The intercellular spaces in leaves were infiltrated with the HR-eliciting strain Pst avrRpm1, (■), the virulent strain Pst (△) or the non-virulent and non-HR eliciting derivative, Pst hrpA (◇). (B) The appearance of Arabidopsis Col-0 and etr1-1 leaves at various h following injection with 2 × 106 c.f.u.mL−1 with of Pst avrRpm1. (C) Explants (1 cm diameter discs) from Arabidopsis leaf areas infiltrated with suspensions of Pst avrRpm1 were placed in a 1.5 cm diameter well, bathed in 1 mL de-ionized H2O. Changes in the conductivity of the bathing solution, as an indicator of electrolyte leakage from either wild type Col-0 (◆), mutants which were compromised in ethylene signaling; etr1-1 (□), ein2-2 (▲) or which overproduced ethylene; eto2-1 (●) were measured using a conductivity meter. Methodological details are set out in Mur et al.9A further point requires consideration; the role of ethylene as a direct contributor to plant defense.15 The contribution of ethylene to the HR has been disputed,16 but in tobacco we have observed that altered ethylene production influenced the formation of a P. syringae pv. phaseolicola elicited HR.9 In Arabidopsis, cell death in the ethylene receptor mutant etr1-1 following inoculation with Pst avrRpm1 is delayed compared to wild type (Fig. 2B). When electrolyte leakage was used to quantify Pst avrRpm1 cell death, both etr1-1 and the ethylene insensitive signaling mutant ein2-1 exhibited slower death than wild-type but in the ethylene overproducing mutant eto2, cell death was augmented (Fig. 2C). These data indicate that ethylene influences the kinetics of the HR.Taking these data together we suggest that the complexity of signal interaction during the HR or in SAR/ISR could be further dissected by combining the genetic resources of Arabidopsis with measurements of ethylene production using such sensitive approaches as LAPD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号