首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   2篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2016年   3篇
  2015年   5篇
  2014年   8篇
  2013年   7篇
  2012年   7篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   10篇
  2007年   8篇
  2006年   5篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
排序方式: 共有93条查询结果,搜索用时 31 毫秒
61.
Physical properties of the extracellular matrix (ECM) are known to regulate cellular processes ranging from spreading to differentiation, with alterations in cell phenotype closely associated with changes in physical properties of cells themselves. When plated on substrates of varying stiffness, fibroblasts have been shown to exhibit stiffness matching property, wherein cell cortical stiffness increases in proportion to substrate stiffness up to 5 kPa, and subsequently saturates. Similar mechanoadaptation responses have also been observed in other cell types. Trypsin de-adhesion represents a simple experimental framework for probing the contractile mechanics of adherent cells, with de-adhesion timescales shown to scale inversely with cortical stiffness values. In this study, we combine experiments and computation in deciphering the influence of substrate properties in regulating de-adhesion dynamics of adherent cells. We first show that NIH 3T3 fibroblasts cultured on collagen-coated polyacrylamide hydrogels de-adhere faster on stiffer substrates. Using a simple computational model, we qualitatively show how substrate stiffness and cell-substrate bond breakage rate collectively influence de-adhesion timescales, and also obtain analytical expressions of de-adhesion timescales in certain regimes of the parameter space. Finally, by comparing stiffness-dependent experimental and computational de-adhesion responses, we show that faster de-adhesion on stiffer substrates arises due to force-dependent breakage of cell-matrix adhesions. In addition to illustrating the utility of employing trypsin de-adhesion as a biophysical tool for probing mechanoadaptation, our computational results highlight the collective interplay of substrate properties and bond breakage rate in setting de-adhesion timescales.  相似文献   
62.
63.
Human Immunodeficiency Virus (HIV-1) poses a serious threat to the developing world and sexual transmission continues to be the major source of new infections. Therefore, the development of molecules, which prevent new HIV-1 infections, is highly warranted. In the present study, a panel of human hemoglobin (Hb)-α subunit derived peptides and their analogues, with an ability to bind gp120, were designed in-silico and their anti-HIV-1 activity was evaluated. Of these peptides, HbAHP-25, an analogue of Hb-α derived peptide, demonstrated significant anti-HIV-1 activity. HbAHP-25 was found to be active against CCR5-tropic HIV-1 strains (ADA5 and BaL) and CXCR4-tropic HIV-1 strains (IIIB and NL4-3). Surface plasmon resonance (SPR) and ELISA revealed direct interaction between HbAHP-25 and HIV-1 envelope protein, gp120. The peptide prevented binding of CD4 to gp120 and blocked subsequent steps leading to entry and/or fusion or both. Anti-HIV activity of HbAHP-25 appeared to be specific as it failed to inhibit the entry of HIV-1 pseudotyped virus (HIV-1 VSV). Further, HbAHP-25 was found to be non-cytotoxic to TZM-bl cells, VK2/E6E7 cells, CEM-GFP cells and PBMCs, even at higher concentrations. Moreover, HbAHP-25 retained its anti-HIV activity in presence of seminal plasma and vaginal fluid. In brief, the study identified HbAHP-25, a novel anti-HIV peptide, which directly interacts with gp120 and thus has a potential to inhibit early stages of HIV-1 infection.  相似文献   
64.
Microtubules are nano-machines that grow and shrink stochastically, making use of the coupling between chemical kinetics and mechanics of its constituent protofilaments (PFs). We investigate the stability and shrinkage of microtubules taking into account inter-protofilament interactions and bending interactions of intrinsically curved PFs. Computing the free energy as a function of PF tip position, we show that the competition between curvature energy, inter-PF interaction energy and entropy leads to a rich landscape with a series of minima that repeat over a length-scale determined by the intrinsic curvature. Computing Langevin dynamics of the tip through the landscape and accounting for depolymerization, we calculate the average unzippering and shrinkage velocities of GDP protofilaments and compare them with the experimentally known results. Our analysis predicts that the strength of the inter-PF interaction (Ems) has to be comparable to the strength of the curvature energy (Emb) such that EmsEmb1kBT, and questions the prevalent notion that unzippering results from the domination of bending energy of curved GDP PFs. Our work demonstrates how the shape of the free energy landscape is crucial in explaining the mechanism of MT shrinkage where the unzippered PFs will fluctuate in a set of partially peeled off states and subunit dissociation will reduce the length.  相似文献   
65.
66.
67.
Populations of oriental white-backed vulture (Gyps bengalensis), long-billed vulture (Gyps indicus) and slender-billed vulture (Gyps tenuirostris) crashed during the mid-1990s throughout the Indian subcontinent. Surveys in India, initially conducted in 1991–1993 and repeated in 2000, 2002, 2003 and 2007, revealed that the population of Gyps bengalensis had fallen by 2007 to 0.1% of its numbers in the early 1990s, with the population of Gyps indicus and G. tenuirostris combined having fallen to 3.2% of its earlier level. A survey of G. bengalensis in western Nepal indicated that the size of the population in 2009 was 25% of that in 2002. In this paper, repeat surveys conducted in 2011 were analysed to estimate recent population trends. Populations of all three species of vulture remained at a low level, but the decline had slowed and may even have reversed for G. bengalensis, both in India and Nepal. However, estimates of the most recent population trends are imprecise, so it is possible that declines may be continuing, though at a significantly slower rate. The degree to which the decline of G. bengalensis in India has slowed is consistent with the expected effects on population trend of a measured change in the level of contamination of ungulate carcasses with the drug diclofenac, which is toxic to vultures, following a ban on its veterinary use in 2006. The most recent available information indicates that the elimination of diclofenac from the vultures’ food supply is incomplete, so further efforts are required to fully implement the ban.  相似文献   
68.
A new class of 3-fluoroallyl amine-based SSAO/VAP-1 inhibitors is reported. These compounds have excellent selectivity over diamine oxidase, MAO-A and MAO-B. Synthesis and SAR studies leading to compound 28 (PXS-4159A) are reported. The pharmacokinetic profile of 28 in the rat, together with activity in a murine model of lung inflammation are also disclosed.  相似文献   
69.
Our group previously described and mapped to chromosomal region 12p13 a form of dominantly inherited hereditary spastic ataxia (HSA) in three large Newfoundland (Canada) families. This report identifies vesicle-associated membrane protein 1 (VAMP1), which encodes a critical protein for synaptic exocytosis, as the responsible gene. In total, 50 affected individuals from these families and three independent probands from Ontario (Canada) share the disease phenotype together with a disruptive VAMP1 mutation that affects a critical donor site for the splicing of VAMP1 isoforms. This mutation leads to the loss of the only VAMP1 isoform (VAMP1A) expressed in the nervous system, thus highlighting an association between the well-studied VAMP1 and a neurological disorder. Given the variable phenotype seen in the affected individuals examined here, we believe that VAMP1 should be tested for mutations in patients with either ataxia or spastic paraplegia.  相似文献   
70.
Naik MT  Lee H  Bracken C  Breslow E 《Biochemistry》2005,44(35):11766-11776
Neurophysins are hormone-binding proteins composed of two partially homologous domains. Ligand-binding (localized to the amino domain) and dimerization (involves both domains) are cooperatively linked by an as yet undefined allosteric mechanism. To help define this mechanism, we investigated the backbone dynamics of the unliganded monomeric state of the H80E mutant of bovine neurophysin-I by (15)N NMR. Model-free analysis of the NMR relaxation parameters indicated significantly greater flexibility in the carboxyl domain than in the amino domain, particularly at their dimerization interface segments. Amino domain residues critical to hormone binding were highly structured, constraining potential allosteric mechanisms. Model-free analysis additionally demonstrated chemical exchange effects, manifest as R(ex) terms, in 16 residues, 14 of which are located in the amino domain at, or immediately adjacent to, either the dimerization interface or the hormone-binding site. The chemical exchange process was further characterized using relaxation-compensated CPMG measurements, the results allowing assignment of the process to monomer-dimer exchange and calculation of the exchange kinetics, which were slow on the NMR time scale. An apparently different concentration-dependent process, distinguished from normal dimerization by its fast exchange behavior and pH-independence, also principally involved a subset of residues at and immediately adjacent to either the hormone-binding site or the amino domain dimerization interface. The data represent the first direct demonstration of an effect of dimerization in the unliganded state on neurophysin's hormone-binding site, the effect particularly involving residues that interact with hormone residue 2, and specifically identify Ser25 and Ile26 as likely intermediaries between the sites of dimerization and of hormone binding. Consistent with recent views of the role of anchor residues in protein interactions, we propose that dimerization proceeds by a fast pH-independent association of the well-structured amino domain interface that is rapidly communicated to the binding site for hormone residue 2, followed by a rate-determining pH-dependent interaction of the less structured carboxyl domain interface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号