首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   1篇
  55篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   2篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   8篇
  2012年   5篇
  2011年   3篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2003年   2篇
排序方式: 共有55条查询结果,搜索用时 0 毫秒
41.
Following initiation of translocation across the membrane of the endoplasmic reticulum via the translocon, polypeptide chains are N-glycosylated by the oligosaccharyl transferase (OT) enzyme complex. Translocation and N-glycosylation are concurrent events and would be expected to require juxtaposition of the translocon and the OT complex. To determine whether any of the subunits of the OT complex and translocon mediate interactions between the two complexes, we initiated a systematic study in budding yeast using the split-ubiquitin approach. Interestingly, the OT subunit Stt3p was found to interact only with Sec61p, whereas another OT subunit, Ost4p, was found to interact with all three components of the translocon, Sec61p, Sbh1p, and Sss1p. The OT subunit Wbp1p was found to interact very strongly with Sec61p and Sbh1p and weakly with Sss1p. Other OT subunits, Ost1p, Ost2p, and Swp1p were found to interact with Sec61p and either Sbh1p or Sss1p. Ost3p exhibited a weak interaction with Sec61p and Sbh1p, whereas Ost5p and Ost6p interacted very weakly with Sec61p and failed to interact with Sbh1p or Sss1p. We were able to confirm these split-ubiquitin findings by a chemical cross-linking technique. Based on our findings using these two techniques, we conclude that the association of these two complexes is stabilized via multiple protein-protein contacts. Based on extrapolation of the structural parameters of the crystal structure of the prokaryotic Sec complex to the eukaryotic complex, we propose a working model to understand the organization of the translocon-OT supercomplex.  相似文献   
42.
Disruption of methylarginine metabolism impairs vascular homeostasis   总被引:9,自引:0,他引:9  
Asymmetric dimethylarginine (ADMA) and monomethyl arginine (L-NMMA) are endogenously produced amino acids that inhibit all three isoforms of nitric oxide synthase (NOS). ADMA accumulates in various disease states, including renal failure, diabetes and pulmonary hypertension, and its concentration in plasma is strongly predictive of premature cardiovascular disease and death. Both L-NMMA and ADMA are eliminated largely through active metabolism by dimethylarginine dimethylaminohydrolase (DDAH) and thus DDAH dysfunction may be a crucial unifying feature of increased cardiovascular risk. However, despite considerable interest in this pathway and in the role of ADMA as a cardiovascular risk factor, there is little evidence to support a causal role of ADMA in pathophysiology. Here we reveal the structure of human DDAH-1 and probe the function of DDAH-1 both by deleting the DDAH1 gene in mice and by using DDAH-specific inhibitors which, as we demonstrate by crystallography, bind to the active site of human DDAH-1. We show that loss of DDAH-1 activity leads to accumulation of ADMA and reduction in NO signaling. This in turn causes vascular pathophysiology, including endothelial dysfunction, increased systemic vascular resistance and elevated systemic and pulmonary blood pressure. Our results also suggest that DDAH inhibition could be harnessed therapeutically to reduce the vascular collapse associated with sepsis.  相似文献   
43.
Conformational change in the selectivity filter of KcsA as a function of ambient potassium concentration is studied with solid-state NMR. This highly conserved region of the protein is known to chelate potassium ions selectively. We report solid-state NMR chemical shift fingerprints of two distinct conformations of the selectivity filter; significant changes are observed in the chemical shifts of key residues in the filter as the potassium ion concentration is changed from 50 mM to 1 μM. Potassium ion titration studies reveal that the site-specific Kd for K+ binding at the key pore residue Val76 is on the order of ∼ 7 μM and that a relatively high sample hydration is necessary to observe the low-K+ conformer. Simultaneous detection of both conformers at low ambient potassium concentration suggests that the high-K+ and low-K+ states are in slow exchange on the NMR timescale (kex < 500 s− 1). The slow rate and tight binding for evacuating both inner sites simultaneously differ from prior observations in detergent in solution, but agree well with measurements by electrophysiology and appear to result from our use of a hydrated bilayer environment. These observations strongly support a common assumption that the low-K+ state is not involved in ion transmission, and that during transmission one of the two inner sites is always occupied. On the other hand, these kinetic and thermodynamic characteristics of the evacuation of the inner sites certainly could be compatible with participation in a control mechanism at low ion concentration such as C-type inactivation, a process that is coupled to activation and involves closing of the outer mouth of the channel.  相似文献   
44.
Mounting evidence has emphasized the potential of cell therapies in treating various diseases by restoring damaged tissues or replacing defective cells in the body. Cell therapies have become a strong therapeutic modality by applying noninvasive in vivo molecular imaging for examining complex cellular processes, understanding pathophysiological mechanisms of diseases, and evaluating the kinetics/dynamics of cell therapies. In particular, mesenchymal stem cells (MSCs) have shown promise in recent years as drug carriers for cancer treatment. They can also be labeled with different probes and tracked in vivo to assess the in vivo effect of administered cells, and to optimize therapy. The exact role of MSCs in oncologic diseases is not clear as MSCs have been shown to be involved in tumor progression and inhibition, and the exact interactions between MSCs and specific cancer microenvironments are not clear. In this review, a multitude of labeling approaches, imaging modalities, and the merits/demerits of each strategy are outlined. In addition, specific examples of the use of MSCs and in vivo imaging in cancer therapy are provided. Finally, present limitations and future outlooks in terms of the translation of different imaging approaches in clinics are discussed.  相似文献   
45.
Fruits and vegetables are the most perishable agricultural commodities, and the postharvest loss of these is tremendous. The objective of this study is to reduce postharvest losses of perishables with a very simple approach. The study was conducted to find out the effect of postharvest herbal treatment on shelf life of tomatoes under ambient conditions. Three different herbal formulations of Curcuma aromatica (A), Glycyrrhiza glabra (B) and Garcinia indica (C) each at concentration of 1% w/v were studied. The tomatoes stored were evaluated on 7th and 14th day for physicochemical parameters (viz. Vitamin C, Titrable acidity, pH and total soluble solids) and percent spoilage. It was observed that the formulation of G. indica was found to be most effective. Tomatoes treated with formulation of G. indica were rated for organoleptic evaluation and got very good ratings. This study has revealed the possibility of utilisation of herbal formulations to reduce postharvest losses of tomatoes.  相似文献   
46.
The present study was designed to evaluate in vitro antifungal activity of herbal extracts against three plant pathogenic fungi (viz. Rhizopus stolonifer, Botrytis cinerea and Colletotrichum coccodes). Extracts of leaves and rinds of Garcinia indica, rhizomes of Curcuma aromatica, roots of Glycyrrhiza gahliae, leaves of Nyctanthes arbour-tristis and seeds of Vernonia anthelmintica were used for screening. Screening was done using poisoned food technique. Relatively potent extracts were shortlisted from this study and were further assayed to find out their minimum fungicidal concentration (MFC). From the above studies, it was observed that ethyl acetate extract of rhizomes of C. aromatica and unripe fruit rinds of G. indica have shown the lowest MFC values amongst the other tested plant extracts. This study indicates that the potential of these plant extracts in the management of diseases caused by plant pathogenic fungi.  相似文献   
47.

Background

Plant protease inhibitors (PIs) constitute a diverse group of proteins capable of inhibiting proteases. Among PIs, serine PIs (SPIs) display stability and conformational restrictions of the reactive site loop by virtue of their compact size, and by the presence of disulfide bonds, hydrogen bonds, and other weak interactions.

Scope of review

The significance of various intramolecular interactions contributing to protein folding mechanism and their role in overall stability and activity of SPIs is discussed here. Furthermore, we have reviewed the effect of variation or manipulation of these interactions on the activity/stability of SPIs.

Major conclusions

The selective gain or loss of disulfide bond(s) in SPIs can be associated with their functional differentiation, which is likely to be compensated by non-covalent interactions (hydrogen bonding or electrostatic interactions). Thus, these intramolecular interactions are collectively responsible for the functional activity of SPIs, through the maintenance of scaffold framework, conformational rigidity and shape complementarities of reactive site loop.

General significance

Structural insight of these interactions will provide an in-depth understanding of kinetic and thermodynamic parameters involved in the folding and stability mechanisms of SPIs. These features can be explored for engineering canonical SPIs for optimizing their overall stability and functionality for various applications.  相似文献   
48.
Oxytocin is a potent uterotonic agent administered to nearly all patients during childbirth in the United States. Inadequate oxytocin response can necessitate Cesarean delivery or lead to uterine atony and postpartum hemorrhage. Thus, it may be clinically useful to identify patients at risk for poor oxytocin response and develop strategies to sensitize the uterus to oxytocin. Previously, we showed that the V281M variant in the oxytocin receptor (OXTR) gene impairs OXTR trafficking to the cell surface, leading to a decreased oxytocin response in cells. Here, we sought to identify pharmacological chaperones that increased oxytocin response in cells expressing WT or V281M OXTR. We screened nine small-molecule agonists and antagonists of the oxytocin/vasopressin receptor family and identified two, SR49059 and L371,257, that restored both OXTR trafficking and oxytocin response in HEK293T cells transfected with V281M OXTR. In hTERT-immortalized human myometrial cells, which endogenously express WT OXTR, treatment with SR49059 and L371,257 increased the amount of OXTR on the cell surface by two- to fourfold. Furthermore, SR49059 and L371,257 increased the endogenous oxytocin response in hTERT-immortalized human myometrial cells by 35% and induced robust oxytocin responses in primary myometrial cells obtained from patients at the time of Cesarean section. If future studies demonstrate that these pharmacological chaperones or related compounds function similarly in vivo, we propose that they could potentially be used to enhance clinical response to oxytocin.  相似文献   
49.
Mycoplasma contamination is a major problem in cell culturing, potentially altering the results of cell line-based experiments in largely uncharacterized ways. To define the consequences of mycoplasma infection at the level of protein expression we utilized the reverse phase protein array technology to analyze the expression of 235 proteins in mycoplasma infected, uninfected post treatment, and never-infected leukemic cell lines. Overall, protein profiles of cultured cells remained relatively stable after mycoplasma infection. However, paired comparisons for individual proteins identified that 18.7% of the proteins significantly changed between the infected and the never-infected cell line samples, and that 14.0% of the proteins significantly altered between the infected and the post treatment samples. Six percent of the proteins were affected in the post treatment samples compared to the never-infected samples, and 7.2% compared to treated cells that had never had mycoplasma infection before. Proteins that were significantly altered in the infected cells were enriched for apoptotic signaling processes and auto-phosphorylation, suggesting an increased cellular stress and a decreased growth rate. In conclusion, this study shows that mycoplasma infection of leukemic cell lines alters the proteins expression levels, potentially confounding experimental results. This reinforces the need for regular testing of mycoplasma.  相似文献   
50.
Oligosaccharyl transferase (OT) catalyzes the transfer of a lipid-linked oligosaccharide to the nascent polypeptide emerging from the translocon. Currently, there is no structural information on the membrane-embedded OT complex, which consists of eight different polypeptide chains. We report a 12 A resolution cryo-electron microscopy structure of OT from yeast. We mapped the locations of four essential OT subunits through a maltose-binding protein fusion strategy. OT was found to have a large domain in the lumenal side of endoplasmic reticulum where the catalysis occurs. The lumenal domain mainly comprises the catalytic Stt3p, the donor substrate-recognizing Wbp1p, and the acceptor substrate-recognizing Ost1p. A prominent groove was observed between these subunits, and we propose that the nascent polypeptide from the translocon threads through this groove while being scanned by the Ost1p subunit for the presence of the glycosylation sequon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号