首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   26篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   6篇
  2018年   5篇
  2017年   8篇
  2016年   11篇
  2015年   12篇
  2014年   13篇
  2013年   34篇
  2012年   24篇
  2011年   27篇
  2010年   23篇
  2009年   13篇
  2008年   25篇
  2007年   19篇
  2006年   21篇
  2005年   16篇
  2004年   15篇
  2003年   20篇
  2002年   15篇
  2001年   6篇
  2000年   1篇
  1999年   5篇
  1998年   5篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有351条查询结果,搜索用时 15 毫秒
91.
92.
We studied tumorigenic and phenotypic characteristics of pre- and postimmortal human B-lymphoblastoid cell lines (LCLs) transformed by Epstein-Barr virus (EBV): preimmortal LCLs showed low telomerase activity and a normal diploid karyotype while postimmortal LCLs showed much higher telomerase activity and maintained a clonal aneuploidic state. Among five postimmortal LCLs tested, LCLs N0005 and N6803 formed colonies in agar medium and showed marked aneuploidy, and N6803 was transplantable into nude mice indicating that it had a complete malignant phenotype, but all preimmortal LCLs and the remaining three postimmortal LCLs lacked these characteristics. The products of tumor suppresser genes, p16(INK4A) and pRb, were downregulated in these two LCLs, and the p53 gene was mutated in N0005 LCL. We believe these results showed for the first time that some postimmortal EBV-transformed LCLs can become tumorigenic, contrary to previous reports, and that these LCLs provide an in vitro model of tumorigenesis induced by EBV.  相似文献   
93.
Flavin recognition by an RNA aptamer targeted toward FAD   总被引:2,自引:0,他引:2  
Flavin adenine dinucleotide (FAD) is one of the primary cofactors in biological redox reactions. Designing cofactor-dependent redox ribozymes could benefit from studies of new RNA-cofactor complexes, as would our understanding of ribozyme evolution during an RNA World. We have therefore used the SELEX method to identify RNA aptamers that recognize FAD. Functional analysis of mutant aptamers, S1 nuclease probing, and comparative sequence analysis identified a simple, 45 nt helical structure with several internal bulges as the core-binding element. These aptamers recognize with high specificity the isoalloxazine nucleus of FAD but do not distinguish FAD from FADH(2), nor are they removed from an FAD resin with UMP (which shares a pattern of hydrogen bond donors and acceptors along one face). Thus, these aptamers are structurally and functionally distinct from previously identified FMN and riboflavin aptamers. Circular dichroism data suggest a conformational change in the RNA upon FAD binding. These aptamers require magnesium and are active across a wide pH range (4.5-8.9). Since general acid-base catalysis plays a role in some flavin-dependent redox reaction mechanisms, these aptamers may be particularly well-suited to the design of new redox ribozymes.  相似文献   
94.
Amino acid residues arginine (R) and lysine (K) have similar physicochemical characteristics and are often mutually substituted during evolution without affecting protein function. Statistical examinations on human proteins show that more R than K residues are used in the proximity of R residues, whereas more K than R are used near K residues. This biased use occurs on both a global and a local scale (shorter than ∼100 residues). Even within a given exon, G + C-rich and A + T-rich short DNA segments preferentially encode R and K, respectively. The biased use of R and K on a local scale is also seen in Saccharomyces cerevisiae and Caenorhabdidtis elegans, which lack global-scale mosaic structures with varying GC%, or isochores. Besides R and K, several amino acids are also used with a positive or negative correlation with the local GC% of third codon bases. The local-, or ``within-gene'-, scale heterogeneity of the DNA sequence may influence the sequence of the encoded protein segment. Received: 2 March 1998 / Accepted: 23 April 1998  相似文献   
95.
Despite the extensive use of photographic identification methods to investigate humpback whales in the North Pacific, few quantitative analyses have been conducted. We report on a comprehensive analysis of interchange in the North Pacific among three wintering regions (Mexico, Hawaii, and Japan) each with two to three subareas, and feeding areas that extended from southern California to the Aleutian Islands. Of the 6,413 identification photographs of humpback whales obtained by 16 independent research groups between 1990 and 1993 and examined for this study, 3,650 photographs were determined to be of suitable quality. A total of 1,241 matches was found by two independent matching teams, identifying 2,712 unique whales in the sample (seen one to five times). Site fidelity was greatest at feeding areas where there was a high rate of resightings in the same area in different years and a low rate of interchange among different areas. Migrations between winter regions and feeding areas did not follow a simple pattern, although highest match rates were found for whales that moved between Hawaii and southeastern Alaska, and between mainland and Baja Mexico and California. Interchange among subareas of the three primary wintering regions was extensive for Hawaii, variable (depending on subareas) for Mexico, and low for Japan and reflected the relative distances among subareas. Interchange among these primary wintering regions was rare. This study provides the first quantitative assessment of the migratory structure of humpback whales in the entire North Pacific basin.  相似文献   
96.
Depth-related changes in whole-community structure were evaluated in a coastal marine sediment using a molecular fingerprinting method, terminal restriction fragment length polymorphism (T-RFLP) analysis, and a chemotaxonomic technique (quinone profiling). Dendrograms derived from both T-RFLP analysis and quinone profiling indicated a significant variation in microbial community structure between the 0-2 cm layer and deeper layers. This corresponded to the dramatic change in the redox potential, acid-volatile sulphide-sulphur and bacterial numbers observed at 0-2 cm and 2-4 cm depths. A significant change in the number of terminal restriction fragments (T-RFs) was also detected at this transition depth. However, the change in major T-RFs with depth was not seen in electropherograms. The population changes were primarily variations in minor ribotypes. Most quinone homologues were detected at all depths, although the quinone composition changed with depth. Therefore, quinone profiling also suggested that the depth-related variation was primarily attributable to minor bacterial groups rather than change in the major population structure. 16S rDNA clone library analysis revealed that clones belonging to the genera Vibrio and Serratia predominated as major bacterial groups at all depths. Our data suggested that the sediment community might result from sedimentation effects of sinking particles. Overall, our results demonstrated that the combined methods of T-RFLP analysis and quinone profiling were effective for assessing depth-related microbial populations.  相似文献   
97.
98.
99.
To identify physiologically important human N-myristoylated proteins, 90 cDNA clones predicted to encode human N-myristoylated proteins were selected from a human cDNA resource (4,369 Kazusa ORFeome project human cDNA clones) by two bioinformatic N-myristoylation prediction systems, NMT-The MYR Predictor and Myristoylator. After database searches to exclude known human N-myristoylated proteins, 37 cDNA clones were selected as potential human N-myristoylated proteins. The susceptibility of these cDNA clones to protein N-myristoylation was first evaluated using fusion proteins in which the N-terminal ten amino acid residues were fused to an epitope-tagged model protein. Then, protein N-myristoylation of the gene products of full-length cDNAs was evaluated by metabolic labeling experiments both in an insect cell-free protein synthesis system and in transfected human cells. As a result, the products of 13 cDNA clones (FBXL7, PPM1B, SAMM50, PLEKHN, AIFM3, C22orf42, STK32A, FAM131C, DRICH1, MCC1, HID1, P2RX5, STK32B) were found to be human N-myristoylated proteins. Analysis of the role of protein N-myristoylation on the intracellular localization of SAMM50, a mitochondrial outer membrane protein, revealed that protein N-myristoylation was required for proper targeting of SAMM50 to mitochondria. Thus, the strategy used in this study is useful for the identification of physiologically important human N-myristoylated proteins from human cDNA resources.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号