首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1809篇
  免费   109篇
  国内免费   1篇
  2022年   9篇
  2021年   26篇
  2020年   15篇
  2019年   18篇
  2018年   21篇
  2017年   19篇
  2016年   31篇
  2015年   67篇
  2014年   68篇
  2013年   79篇
  2012年   92篇
  2011年   102篇
  2010年   72篇
  2009年   56篇
  2008年   94篇
  2007年   104篇
  2006年   102篇
  2005年   97篇
  2004年   129篇
  2003年   110篇
  2002年   109篇
  2001年   30篇
  2000年   15篇
  1999年   30篇
  1998年   29篇
  1997年   22篇
  1996年   14篇
  1995年   14篇
  1994年   18篇
  1993年   17篇
  1992年   25篇
  1991年   14篇
  1990年   19篇
  1989年   21篇
  1988年   14篇
  1987年   18篇
  1986年   19篇
  1985年   14篇
  1984年   11篇
  1983年   9篇
  1980年   9篇
  1979年   11篇
  1978年   12篇
  1975年   11篇
  1974年   8篇
  1972年   9篇
  1971年   8篇
  1970年   17篇
  1969年   11篇
  1968年   10篇
排序方式: 共有1919条查询结果,搜索用时 656 毫秒
921.
922.
Ebola virus (EBOV) infection is initiated by the interaction of the viral surface envelope glycoprotein (GP) with the binding sites on target cells. Differences in the mortality among different species of the Ebola viruses, i.e., Zaire ebolavirus (ZEBOV) and Reston ebolavirus (REBOV), correspond to the in vitro infectivity of the pseudo-typed virus constructed with the GPs in cells expressing macrophage galactose-type calcium-type lectin (MGL/CD301). Through mutagenesis of GP2, the transmembrane-anchored subunit of GP, we found that residues 502–527 of the GP2 sequence determined the different infectivity between VSV-ZEBOV GP and -REBOV GP in MGL/CD301-expressing cells and a histidine residue at position 516 of ZEBOV GP2 appeared essential in the differential infectivity. These findings may provide a clue to clarify a molecular basis of different pathogenicity among EBOV species.  相似文献   
923.
924.
Inflammation is increasingly recognized as an essential component of tumorigenesis, which is promoted and suppressed by various T cell subsets acting in different ways. It was shown previously in Runx3-deficient mice that differentiation of CD8 T and NK cells is perturbed. In this study, we show that Runx3 is also required for proper differentiation and function of regulatory T cells. In Runx3-deficient mice, T cells were unable to inhibit inflammation and to suppress tumor development. As expected, recombination activating gene 2-deficient mice bearing Runx3-deficient lymphocytes spontaneously developed colon tumors. However, tumor formation was completely blocked by transfer of either regulatory T cells or CD8 T cells derived from wild-type mice to mutant mice or by housing mutant mice in a specific pathogen-free condition. These results indicate that Runx3-deficient lymphocytes and microorganisms act together to induce inflammation and consequently induce the development of colon tumors.  相似文献   
925.
Fibroblast growth factor‐2 (FGF‐2) regulates a variety of functions of the periodontal ligament (PDL) cell, which is a key player during tissue regeneration following periodontal tissue breakdown by periodontal disease. In this study, we investigated the effects of FGF‐2 on the cell migration and related signaling pathways of MPDL22, a mouse PDL cell clone. FGF‐2 activated the migration of MPDL22 cells and phosphorylation of phosphatidylinositol 3‐kinase (PI3K) and akt. The P13K inhibitors, Wortmannin and LY294002, suppressed both cell migration and akt activation in MPDL22, suggesting that the PI3K/akt pathway is involved in FGF‐2‐stimulated migration of MPDL22 cells. Moreover, in response to FGF‐2, MPDL22 showed increased CD44 expression, avidity to hyaluronan (HA) partly via CD44, HA production and mRNA expression of HA synthase (Has)‐1, 2, and 3. However, the distribution of HA molecular mass produced by MPDL22 was not altered by FGF‐2 stimulation. Treatment of transwell membrane with HA facilitated the migration of MPDL22 cells and an anti‐CD44 neutralizing antibody inhibited it. Interestingly, the expression of CD44 was colocalized with HA on the migrating cells when stimulated with FGF‐2. Furthermore, an anti‐CD44 antibody and small interfering RNA for CD44 significantly decreased the FGF‐2‐induced migration of MPDL22 cells. Taken together, PI3K/akt and CD44/HA signaling pathways are responsible for FGF‐2‐mediated cell motility of PDL cells, suggesting that FGF‐2 accelerates periodontal regeneration by regulating the cellular functions including migration, proliferation and modulation of extracellular matrix production. J. Cell. Physiol. 226: 809–821, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   
926.
Chronic inflammation is known to lead to an increased risk for the development of cancer. Under inflammatory condition, cellular DNA is damaged by hypobromous acid, which is generated by myeloperoxidase and eosinophil peroxidase. The reactive brominating species induced brominated DNA adducts such as 8-bromo-2′-deoxyguanosine (8-Br-dG), 8-bromo-2′-deoxyadenosine (8-Br-dA), and 5-bromo-2′-deoxycytidine (5-Br-dC). These DNA lesions may be implicated in carcinogenesis. In this study, we analyzed the miscoding properties of the brominated DNA adducts generated by human DNA polymerases (pols). Site-specifically modified oligodeoxynucleotides containing a single 8-Br-dG, 8-Br-dA, or 5-Br-dC were used as a template in primer extension reactions catalyzed by human pols α, κ, and η. When 8-Br-dG-modified template was used, pol α primarily incorporated dCMP, the correct base, opposite the lesion, along with a small amount of one-base deletion (4.8%). Pol κ also promoted one-base deletion (14.2%), accompanied by misincorporation of dGMP (9.5%), dAMP (8.0%), and dTMP (6.1%) opposite the lesion. Pol η, on the other hand, readily bypassed the 8-Br-dG lesion in an error-free manner. As for 8-Br-dA and 5-Br-dC, all the pols bypassed the lesions and no miscoding events were observed. These results indicate that only 8-Br-dG, and not 5-Br-dC and 8-Br-dA, is a mutagenic lesion; the miscoding frequency and specificity vary depending on the DNA pol used. Thus, hypobromous acid-induced 8-Br-dG adduct may increase mutagenic potential at the site of inflammation.  相似文献   
927.
Precise control of the timing of translational activation of dormant mRNAs stored in oocytes is required for normal progression of oocyte maturation. We previously showed that Pumilio1 (Pum1) is specifically involved in the translational control of cyclin B1 mRNA during Xenopus oocyte maturation, in cooperation with cytoplasmic polyadenylation element-binding protein (CPEB). It was reported that another Pumilio, Pumilio2 (Pum2), exists in Xenopus oocytes and that this protein regulates the translation of RINGO mRNA, together with Deleted in Azoospermia-like protein (DAZL). In this study, we characterized Pum1 and Pum2 biochemically by using newly produced antibodies that discriminate between them. Pum1 and Pum2 are bound to several key proteins involved in translational control of dormant mRNAs, including CPEB and DAZL, in immature oocytes. However, Pum1 and Pum2 themselves have no physical interaction. Injection of anti-Pum1 or anti-Pum2 antibody accelerated CPEB phosphorylation, cyclin B1 translation, and oocyte maturation. Pum1 phosphorylation coincides with the dissociation of CPEB from Pum1 and the translational activation of cyclin B1 mRNA, a target of Pum1, whereas Pum2 phosphorylation occurred at timing earlier than that for Pum1. Some, but not all, of cyclin B1 mRNAs release the deadenylase PARN during oocyte maturation, whereas Pum1 remains associated with the mRNA. On the basis of these findings, we discuss the functions of Pum1 and Pum2 in translational control of mRNAs during oocyte maturation.  相似文献   
928.
929.
Flagellar movement of the sea urchin sperm is regulated by intracellular Ca(2+). Flagellasialin, a polysialic acid-containing glycoprotein, as well as other membrane proteins seems responsible for the Ca(2+) control. To elucidate the mechanism of Ca(2+) dynamics underlying flagellar movement, we analysed the sperm's mechanosensory behavioural responses by using microtechniques. In sea water containing 10 mM Ca(2+), the sperm swim in circular paths. When a mechanical stimulus was applied to the sperm head with a glass microstylus, the sperm showed a series of flagellar responses, consisting of a stoppage of beating (quiescence) and a recovery of swimming in a straight path, followed by swimming in a circular path again; as the result the sperm avoided the obstacle. Ca(2+)-imaging with Fluo-4 showed that the intracellular Ca(2+) was high in the quiescence and gradually decreased after that. The effects of blockers and antibodies against candidate components revealed that the Ca(2+) influx was induced by Ca(2+) channels and the Ca(2+) efflux was induced by a flagellasialin-related Ca(2+)-efflux system, plasma membrane Ca(2+)-ATPases and the K(+)-dependent Na(+)/Ca(2+) exchanger. The results show that the Ca(2+)-dependent mechanosensory behaviour of the sea urchin sperm is regulated by organized functioning of the membrane environment including the plasma membrane proteins and flagellasialin.  相似文献   
930.
An estimation of cardiac output can be obtained from arterial pressure waveforms using the Modelflow method. However, whether the assumptions associated with Modelflow calculations are accurate during whole body heating is unknown. This project tested the hypothesis that cardiac output obtained via Modelflow accurately tracks thermodilution-derived cardiac outputs during whole body heat stress. Acute changes of cardiac output were accomplished via lower-body negative pressure (LBNP) during normothermic and heat-stressed conditions. In nine healthy normotensive subjects, arterial pressure was measured via brachial artery cannulation and the volume-clamp method of the Finometer. Cardiac output was estimated from both pressure waveforms using the Modeflow method. In normothermic conditions, cardiac outputs estimated via Modelflow (arterial cannulation: 6.1 ± 1.0 l/min; Finometer 6.3 ± 1.3 l/min) were similar with cardiac outputs measured by thermodilution (6.4 ± 0.8 l/min). The subsequent reduction in cardiac output during LBNP was also similar among these methods. Whole body heat stress elevated internal temperature from 36.6 ± 0.3 to 37.8 ± 0.4°C and increased cardiac output from 6.4 ± 0.8 to 10.9 ± 2.0 l/min when evaluated with thermodilution (P < 0.001). However, the increase in cardiac output estimated from the Modelflow method for both arterial cannulation (2.3 ± 1.1 l/min) and Finometer (1.5 ± 1.2 l/min) was attenuated compared with thermodilution (4.5 ± 1.4 l/min, both P < 0.01). Finally, the reduction in cardiac output during LBNP while heat stressed was significantly attenuated for both Modelflow methods (cannulation: -1.8 ± 1.2 l/min, Finometer: -1.5 ± 0.9 l/min) compared with thermodilution (-3.8 ± 1.19 l/min). These results demonstrate that the Modelflow method, regardless of Finometer or direct arterial waveforms, underestimates cardiac output during heat stress and during subsequent reductions in cardiac output via LBNP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号