首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1809篇
  免费   109篇
  国内免费   1篇
  2022年   9篇
  2021年   26篇
  2020年   15篇
  2019年   18篇
  2018年   21篇
  2017年   19篇
  2016年   31篇
  2015年   67篇
  2014年   68篇
  2013年   79篇
  2012年   92篇
  2011年   102篇
  2010年   72篇
  2009年   56篇
  2008年   94篇
  2007年   104篇
  2006年   102篇
  2005年   97篇
  2004年   129篇
  2003年   110篇
  2002年   109篇
  2001年   30篇
  2000年   15篇
  1999年   30篇
  1998年   29篇
  1997年   22篇
  1996年   14篇
  1995年   14篇
  1994年   18篇
  1993年   17篇
  1992年   25篇
  1991年   14篇
  1990年   19篇
  1989年   21篇
  1988年   14篇
  1987年   18篇
  1986年   19篇
  1985年   14篇
  1984年   11篇
  1983年   9篇
  1980年   9篇
  1979年   11篇
  1978年   12篇
  1975年   11篇
  1974年   8篇
  1972年   9篇
  1971年   8篇
  1970年   17篇
  1969年   11篇
  1968年   10篇
排序方式: 共有1919条查询结果,搜索用时 31 毫秒
901.
We have reported previously the novel δ-opioid agonist, SN-28, which was more potent in in vitro assays than the prototype δ-agonists, TAN-67 and SNC-80. However, when administered by subcutaneous injection, this compound showed no analgesic effect at dosages greater than 30 mg/kg in the acetic acid writhing test. We speculated that SN-28 was not effective in the test because the presence of the charged ammonium groups prevented its penetration through the blood–brain barrier. On the basis of our proposal, we designed the novel δ-agonist, KNT-127, which was effective with systemic administration.  相似文献   
902.
In humans, evaporative heat loss from eccrine sweat glands is critical for thermoregulation during exercise and/or exposure to hot environmental conditions, particularly when environmental temperature is greater than skin temperature. Since the time of the ancient Greeks, the significance of sweating has been recognized, whereas our understanding of the mechanisms and controllers of sweating has largely developed during the past century. This review initially focuses on the basic mechanisms of eccrine sweat secretion during heat stress and/or exercise along with a review of the primary controllers of thermoregulatory sweating (i.e., internal and skin temperatures). This is followed by a review of key nonthermal factors associated with prolonged heat stress and exercise that have been proposed to modulate the sweating response. Finally, mechanisms pertaining to the effects of heat acclimation and microgravity exposure are presented.  相似文献   
903.
904.
Paramecium shows rapid forward swimming due to increased beat frequency of cilia in normal (forward swimming) direction in response to various kinds of stimuli applied to the cell surface that cause K+‐outflow accompanied by a membrane hyperpolarization. Some adenylate cyclases are known to be functional K+ channels in the membrane. Using gene‐specific knockdown methods, we examined nine paralogues of adenylate cyclases in P. tetraurelia to ascertain whether and how they are involved in the mechanical stimulus‐induced hyperpolarization‐coupled acceleration of forward swimming. Results demonstrated that knockdown of the adenylate cyclase 1 (ac1)‐gene and 2 (ac2)‐gene inhibited the acceleration of forward swimming in response to mechanical stimulation of the cell, whereas that spared the acceleration response to external application of 8‐Br‐cAMP and dilution of extracellular [K+] induced hyperpolarization. Electrophysiological examination of the knockdown cells revealed that the hyperpolarization‐activated inward K+ current is smaller than that of a normal cell. Our results suggest that AC1 and AC2 are involved in the mechanical stimulus‐induced acceleration of ciliary beat in Paramecium.  相似文献   
905.
Energy systems using renewables with adequate energy carriers are needed for sustainability. Before accelerating technology implementation for the transition to the new energy system, region‐specific implementation effects should be carefully examined as a system. In this study, we aim to analyze an energy system using hydrogen as an energy carrier with the approach of combining life cycle assessment and a regional energy simulation model. The model calculates the emissions, such as CO2, nitrogen oxides (NOx), sulfur oxides (SOx), and volatile organic compounds, and their impacts on human health, social assets, primary production, and an integrated index. The analysis quantitatively presented various environmental impacts by region, life cycle stage, and impact category. Climate change was dominant on the integrated index while the other impact categories were also important. Fuel cell vehicles were effective in mitigating local air pollution, especially in high‐population regions where many people are adversely affected. Although technology implementation contributes to mitigating environmental impacts at locations of energy users, it also has possibilities to have negative impacts at locations of device manufacturing and raw material processing. The definition of the regional division was also an important factor in energy system design because the final results of life cycle assessments are highly sensitive to region‐specific characteristics. The proposed region‐specific analysis is expected to support local governments and technology developers in designing appropriate energy systems for regions and building marketing plans for specific targets.  相似文献   
906.
Increasing drought resistance without sacrificing grain yield remains an ongoing challenge in crop improvement. In this study, we report that O ryza s ativa CCCH‐t andem z inc f inger protein 5 (OsTZF5) can confer drought resistance and increase grain yield in transgenic rice plants. Expression of OsTZF5 was induced by abscisic acid, dehydration and cold stress. Upon stress, OsTZF5‐GFP localized to the cytoplasm and cytoplasmic foci. Transgenic rice plants overexpressing OsTZF5 under the constitutive maize ubiquitin promoter exhibited improved survival under drought but also growth retardation. By introducing OsTZF5 behind the stress‐responsive OsNAC6 promoter in two commercial upland cultivars, Curinga and NERICA4, we obtained transgenic plants that showed no growth retardation. Moreover, these plants exhibited significantly increased grain yield compared to non‐transgenic cultivars in different confined field drought environments. Physiological analysis indicated that OsTZF5 promoted both drought tolerance and drought avoidance. Collectively, our results provide strong evidence that OsTZF5 is a useful biotechnological tool to minimize yield losses in rice grown under drought conditions.  相似文献   
907.
908.
With only a few absolute geographic barriers in marine environments, the factors maintaining reproductive isolation among marine organisms remain elusive. However, spatial structuring in breeding habitat can contribute to reproductive isolation. This is particularly important for marine organisms that migrate to use fresh‐ or brackish water environments to breed. The Japanese Gasterosteus stickleback species, the Pacific Ocean three‐spined stickleback (G. aculeatus) and the Japan Sea stickleback (G. nipponicus) overwinter in the sea, but migrate to rivers for spawning. Although they co‐occur at several locations across the Japanese islands, they are reproductively isolated. Our previous studies in Bekanbeushi River showed that the Japan Sea stickleback spawns in the estuary, while the Pacific Ocean stickleback mainly spawns further upstream in freshwater. Overall genomic divergence was very high with many interspersed regions of introgression. Here, we investigated genomic divergence and introgression between the sympatric species in the much shorter Tokotan River, where they share spawning sites. The levels of genome‐wide divergence were reduced and introgression was increased, suggesting that habitat isolation substantially contributes to a reduction in gene flow. We also found that genomic regions of introgression were largely shared between the two systems. Furthermore, some regions of introgression were located near loci with a heterozygote advantage for juvenile survival. Taken together, introgression may be partially driven by adaptation in this system. Although, the two species remain clearly genetically differentiated. Regions with low recombination rates showed especially low introgression. Speciation reversal is therefore likely prevented by barriers other than habitat isolation.  相似文献   
909.
A large number of nucleotide sequences of various pathogens are available in public databases. The growth of the datasets has resulted in an enormous increase in computational costs. Moreover, due to differences in surveillance activities, the number of sequences found in databases varies from one country to another and from year to year. Therefore, it is important to study resampling methods to reduce the sampling bias. A novel algorithm–called the closest-neighbor trimming method–that resamples a given number of sequences from a large nucleotide sequence dataset was proposed. The performance of the proposed algorithm was compared with other algorithms by using the nucleotide sequences of human H3N2 influenza viruses. We compared the closest-neighbor trimming method with the naive hierarchical clustering algorithm and -medoids clustering algorithm. Genetic information accumulated in public databases contains sampling bias. The closest-neighbor trimming method can thin out densely sampled sequences from a given dataset. Since nucleotide sequences are among the most widely used materials for life sciences, we anticipate that our algorithm to various datasets will result in reducing sampling bias.  相似文献   
910.
Odontoblasts produce dentin during development, throughout life, and in response to pathological conditions by sensing stimulation of exposed dentin. The functional properties and localization patterns of transient receptor potential (TRP) melastatin subfamily member 8 (TRPM8) and ankyrin subfamily member 1 (TRPA1) channels in odontoblasts remain to be clarified. We investigated the localization and the pharmacological, biophysical, and mechano-sensitive properties of TRPM8 and TRPA1 channels in rat odontoblasts. Menthol and icilin increased the intracellular free Ca2+ concentration ([Ca2+]i). Icilin-, WS3-, or WS12-induced [Ca2+]i increases were inhibited by capsazepine or 5-benzyloxytriptamine. The increase in [Ca2+]i elicited by allyl isothiocyanate (AITC) was inhibited by HC030031. WS12 and AITC exerted a desensitizing effect on [Ca2+]i increase. Low-temperature stimuli elicited [Ca2+]i increases that are sensitive to both 5-benzyloxytriptamine and HC030031. Hypotonic stimulation-induced membrane stretch increased [Ca2+]i; HC030031 but not 5-benzyloxytriptamine inhibited the effect. The results suggest that TRPM8 channels in rat odontoblasts play a role in detecting low-temperature stimulation of the dentin surface and that TRPA1 channels are involved in sensing membrane stretching and low-temperature stimulation. The results also indicate that odontoblasts act as mechanical and thermal receptor cells, detecting the stimulation of exposed dentin to drive multiple cellular functions, such as sensory transduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号