全文获取类型
收费全文 | 2842篇 |
免费 | 207篇 |
国内免费 | 2篇 |
专业分类
3051篇 |
出版年
2022年 | 20篇 |
2021年 | 32篇 |
2020年 | 23篇 |
2019年 | 24篇 |
2018年 | 31篇 |
2017年 | 36篇 |
2016年 | 46篇 |
2015年 | 77篇 |
2014年 | 108篇 |
2013年 | 131篇 |
2012年 | 132篇 |
2011年 | 155篇 |
2010年 | 99篇 |
2009年 | 88篇 |
2008年 | 162篇 |
2007年 | 180篇 |
2006年 | 158篇 |
2005年 | 154篇 |
2004年 | 197篇 |
2003年 | 165篇 |
2002年 | 155篇 |
2001年 | 78篇 |
2000年 | 66篇 |
1999年 | 53篇 |
1998年 | 36篇 |
1997年 | 30篇 |
1996年 | 29篇 |
1995年 | 25篇 |
1994年 | 25篇 |
1993年 | 23篇 |
1992年 | 40篇 |
1991年 | 49篇 |
1990年 | 44篇 |
1989年 | 34篇 |
1988年 | 36篇 |
1987年 | 31篇 |
1986年 | 23篇 |
1985年 | 24篇 |
1984年 | 17篇 |
1983年 | 18篇 |
1982年 | 14篇 |
1981年 | 13篇 |
1980年 | 17篇 |
1979年 | 12篇 |
1977年 | 13篇 |
1974年 | 15篇 |
1973年 | 16篇 |
1971年 | 11篇 |
1970年 | 17篇 |
1969年 | 14篇 |
排序方式: 共有3051条查询结果,搜索用时 15 毫秒
181.
Igarashi M Kim HW Gao F Chang L Ma K Rapoport SI 《Biochimica et biophysica acta》2012,1821(9):1235-1243
Docosapentaenoic acid (DPAn-6, 22:5n-6) is an n-6 polyunsaturated fatty acid (PUFA) whose brain concentration can be increased in rodents by dietary n-3 PUFA deficiency, which may contribute to their behavioral dysfunction. We used our in vivo intravenous infusion method to see if brain DPAn-6 turnover and metabolism also were altered with deprivation. We studied male rats that had been fed for 15weeks post-weaning an n-3 PUFA adequate diet containing 4.6% alpha-linolenic acid (α-LNA, 18:3n-3) or a deficient diet (0.2% α-LNA), each lacking docosahexaenoic acid (22:6n-3) and arachidonic acid (AA, 20:4n-6). [1-(14)C]DPAn-6 was infused intravenously for 5min in unanesthetized rats, after which the brain underwent high-energy microwaving, and then was analyzed. The n-3 PUFA deficient compared with adequate diet increased DPAn-6 and decreased DHA concentrations in plasma and brain, while minimally changing brain AA concentration. Incorporation rates of unesterified DPAn-6 from plasma into individual brain phospholipids were increased 5.2-7.7 fold, while turnover rates were increased 2.1-4.7 fold. The observations suggest that increased metabolism and brain concentrations of DPAn-6 and its metabolites, together with a reduced brain DHA concentration, contribute to behavioral and functional abnormalities reported with dietary n-3 PUFA deprivation in rodents. (196 words). 相似文献
182.
Matsui H Yokoyama T Sekiguchi K Iijima D Sunaga H Maniwa M Ueno M Iso T Arai M Kurabayashi M 《PloS one》2012,7(3):e33283
Mismatch between the uptake and utilization of long-chain fatty acids in the myocardium leads to abnormally high intracellular fatty acid concentration, which ultimately induces myocardial dysfunction. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a rate-limiting enzyme that converts saturated fatty acids (SFAs) to monounsaturated fatty acids. Previous studies have shown that SCD1-deficinent mice are protected from insulin resistance and diet-induced obesity; however, the role of SCD1 in the heart remains to be determined. We examined the expression of SCD1 in obese rat hearts induced by a sucrose-rich diet for 3 months. We also examined the effect of SCD1 on myocardial energy metabolism and apoptotic cell death in neonatal rat cardiac myocytes in the presence of SFAs. Here we showed that the expression of SCD1 increases 3.6-fold without measurable change in the expression of lipogenic genes in the heart of rats fed a high-sucrose diet. Forced SCD1 expression augmented palmitic acid-induced lipid accumulation, but attenuated excess fatty acid oxidation and restored reduced glucose oxidation. Of importance, SCD1 substantially inhibited SFA-induced caspase 3 activation, ceramide synthesis, diacylglycerol synthesis, apoptotic cell death, and mitochondrial reactive oxygen species (ROS) generation. Experiments using SCD1 siRNA confirmed these observations. Furthermore, we showed that exposure of cardiac myocytes to glucose and insulin induced SCD1 expression. Our results indicate that SCD1 is highly regulated by a metabolic syndrome component in the heart, and such induction of SCD1 serves to alleviate SFA-induced adverse fatty acid catabolism, and eventually to prevent SFAs-induced apoptosis. 相似文献
183.
M Kitada K Igarashi S Hirose H Kitagawa 《Biochemical and biophysical research communications》1979,87(2):388-394
Both NADPH- and ascorbic acid-dependent lipid peroxidations were inhibited by spermine, the degree of inhibition being greater with the former peroxidation. The effective concentration of spermine required for inhibition was higher when larger amounts of microsomes were used. However, the activities of NADPH-cytochrome c reductase and NADPH-peroxidase were not influenced by spermine. These results suggest that spermine inhibits lipid peroxidation by binding to phospholipids in the microsomes. 相似文献
184.
Takashima K Mizukawa Y Morishita K Okuyama M Kasahara T Toritsuka N Miyagishima T Nagao T Urushidani T 《Life sciences》2006,78(24):2787-2796
The Toxicogenomics Project is a 5-year collaborative project by the Japanese government and pharmaceutical companies in 2002. Its aim is to construct a large-scale toxicology database of 150 compounds orally administered to rats. The test consists of a single administration test (3, 6, 9 and 24 h) and a repeated administration test (3, 7, 14 and 28 days), and the conventional toxicology data together with the gene expression data in liver as analyzed by using Affymetrix GeneChip are being accumulated. In the project, either methylcellulose or corn oil is employed as vehicle. We examined whether the vehicle itself affects the analysis of gene expression and found that corn oil alone affected the food consumption and biochemical parameters mainly related to lipid metabolism, and this accompanied typical changes in the gene expression. Most of the genes modulated by corn oil were related to cholesterol or fatty acid metabolism (e.g., CYP7A1, CYP8B1, 3-hydroxy-3-methylglutaryl-Coenzyme A reductase, squalene epoxidase, angiopoietin-like protein 4, fatty acid synthase, fatty acid binding proteins), suggesting that the response was physiologic to the oil intake. Many of the lipid-related genes showed circadian rhythm within a day, but the expression pattern of general clock genes (e.g., period 2, arylhydrocarbon nuclear receptor translocator-like, D site albumin promoter binding protein) were unaffected by corn oil, suggesting that the effects are specific for lipid metabolism. These results would be useful for usage of the database especially when drugs with different vehicle control are compared. 相似文献
185.
Sugimoto M Okada Y Sato K Ito K Takeda K 《Bioscience, biotechnology, and biochemistry》2003,67(5):966-972
A cDNA encoding an O-methyltransferase (OMT) was isolated from salt-tolerant barley roots by subtraction hybridization with cDNAs of salt-tolerant barley roots as a tester cDNA and cDNAs of the salt-sensitive barley roots as a driver cDNA. The deduced amino acid sequence showed significant identity with plant caffeic acid/5-hydroxyferulic acid OMTs. Southern blot analysis showed that the OMT gene was a single copy in both salt-tolerant and -sensitive barley. The cloned gene was expressed in a wheat germ cell-free system to produce the OMT, which had methylating activity for caffeic acid. Northern blot analysis showed that the OMT gene was expressed constitutively in the salt-tolerant barley roots and the expression level was increased 1.5 times by salt stress, but the salt-sensitive barley showed no expression of the gene in roots and leaves. 相似文献
186.
Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates 总被引:2,自引:0,他引:2
Furushita M Shiba T Maeda T Yahata M Kaneoka A Takahashi Y Torii K Hasegawa T Ohta M 《Applied and environmental microbiology》2003,69(9):5336-5342
Tetracycline-resistant (Tet(r)) bacteria were isolated from fishes collected at three different fish farms in the southern part of Japan in August and September 2000. Of the 66 Tet(r) gram-negative strains, 29 were identified as carrying tetB only. Four carried tetY, and another four carried tetD. Three strains carried tetC, two strains carried tetB and tetY, and one strain carried tetC and tetG. Sequence analyses indicated the identity in Tet(r) genes between the fish farm bacteria and clinical bacteria: 99.3 to 99.9% for tetB, 98.2 to 100% for tetC, 99.7 to 100% for tetD, 92.0 to 96.2% for tetG, and 97.1 to 100% for tetY. Eleven of the Tet(r) strains transferred Tet(r) genes by conjugation to Escherichia coli HB-101. All transconjugants were resistant to tetracycline, oxycycline, doxycycline, and minocycline. The donors included strains of Photobacterium, Vibrio, Pseudomonas, Alteromonas, Citrobacter, and Salmonella spp., and they transferred tetB, tetY, or tetD to the recipients. Because NaCl enhanced their growth, these Tet(r) strains, except for the Pseudomonas, Citrobacter, and Salmonella strains, were recognized as marine bacteria. Our results suggest that tet genes from fish farm bacteria have the same origins as those from clinical strains. 相似文献
187.
Uchiyama S Hasegawa J Tanimoto Y Moriguchi H Mizutani M Igarashi Y Sambongi Y Kobayashi Y 《Protein engineering》2002,15(6):455-462
Thermal stability was measured for variants of cytochrome c-551 (PA c-551) from a mesophile, Pseudomonas aeruginosa, and a thermophilic counterpart, Hydrogenobacter thermophilus cytochrome c-552 (HT c-552), by differential scanning calorimetry (DSC) at pH 3.6. The mutated residues in PA c-551, selected with reference to the corresponding residues in HT c-552, were located in three spatially separated regions: region I, Phe7 to Ala/Val13 to Met; region II, Glu34 to Tyr/Phe43 to Tyr; and region III, Val78 to Ile. The thermodynamic parameters determined indicated that the mutations in regions I and III caused enhanced stability through not only enthalpic but also entropic contributions, which reflected improved packing of the side chains. Meanwhile, the mutated region II made enthalpic contributions to the stability through electrostatic interactions. The obtained differences in the Gibbs free energy changes of unfolding [Delta(DeltaG)] showed that the three regions contributed to the overall stability in an additive manner. HT c-552 had the smallest heat capacity change (DeltaC(P)), resulting in higher DeltaG values over a wide temperature range (0-100 degrees C), compared to the PA c-551 variants; this contributed to the highest stability of HT c-552. Our DSC measurement results, in conjunction with mutagenesis and structural studies on the homologous mesophilic and thermophilic cytochromes c, provided an extended thermodynamic view of protein stabilization. 相似文献
188.
Cl(-) concentration dependence of photovoltage generation by halorhodopsin from Halobacterium salinarum 下载免费PDF全文
The photovoltage generation by halorhodopsin from Halobacterium salinarum (shR) was examined by adsorbing shR-containing membranes onto a thin polymer film. The photovoltage consisted of two major components: one with a sub-millisecond range time constant and the other with a millisecond range time constant with different amplitudes, as previously reported. These components exhibited different Cl(-) concentration dependencies (0.1-9 M). We found that the time constant for the fast component was relatively independent of the Cl(-) concentration, whereas the time constant for the slow component increased sigmoidally at higher Cl(-) concentrations. The fast and the slow processes were attributed to charge (Cl(-)) movements within the protein and related to Cl(-) ejection, respectively. The laser photolysis studies of shR-membrane suspensions revealed that they corresponded to the formation and the decay of the N intermediate. The photovoltage amplitude of the slow component exhibited a distorted bell-shaped Cl(-) concentration dependence, and the Cl(-) concentration dependence of its time constant suggested a weak and highly cooperative Cl(-)-binding site(s) on the cytoplasmic side (apparent K(D) of approximately 5 M and Hill coefficient > or =5). The Cl(-) concentration dependence of the photovoltage amplitude and the time constant for the slow process suggested a competition between spontaneous relaxation and ion translocation. The time constant for the relaxation was estimated to be >100 ms. 相似文献
189.
Screening of a cDNA library constructed under alkaline pH mediated growth of Aspergillus oryzae implicated a vacuolar H+-ATPase gene (vmaA) as a putative candidate involved in alkaline pH adaptation. A. oryzae vmaA genomic DNA extended to 2072 bp including three introns and encoded a protein of 605 amino acids. VmaAp was homologous to Vma-1p from Neurospora crassa (71%), Vma1p from Saccharomyces cerevisiae (69%) and ATP6A2 from human (49%). The vmaA cDNA complemented S. cerevisiae V-ATPase disrupted strain (Deltavma1) was viable at alkaline pH 8.0 and in the presence of CaCl(2) (100 mM). Northern analysis revealed an enhanced expression of vmaA during growth of A. oryzae in alkaline medium (pH 10.0). The A. oryzae vmaA disruptant exhibited abnormally shrunken vacuoles and hyphal walls at pH 8.5 and a growth defect at pH 10.0, implicating an alkaline pH stress responsive role for vmaA in A. oryzae. 相似文献
190.
Accumulation of glutamate by osmotically stressed Escherichia coli is dependent on pH. 总被引:1,自引:0,他引:1 下载免费PDF全文
In the present study, we measured the accumulation of glutamate after hyperosmotic shock in Escherichia coli growing in synthetic medium. The accumulation was high in the medium containing sucrose at a pH above 8 and decreased with decreases in the medium pH. The same results were obtained when the hyperosmotic shock was carried out with sodium chloride. The internal level of potassium ions in cells growing at a high pH was higher than that in cells growing in a neutral medium. A mutant deficient in transport systems for potassium ions accumulated glutamate upon hyperosmotic stress at a high pH without a significant increase in the internal level of potassium ions. When the medium osmolarity was moderate at a pH below 8, E. coli accumulated gamma-aminobutyrate and the accumulation of glutamate was low. These data suggest that E. coli uses different osmolytes for hyperosmotic adaptation at different environmental pHs. 相似文献