首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   928篇
  免费   88篇
  2023年   5篇
  2022年   9篇
  2021年   14篇
  2020年   10篇
  2019年   6篇
  2018年   13篇
  2017年   7篇
  2016年   25篇
  2015年   21篇
  2014年   27篇
  2013年   34篇
  2012年   46篇
  2011年   51篇
  2010年   22篇
  2009年   30篇
  2008年   40篇
  2007年   45篇
  2006年   39篇
  2005年   48篇
  2004年   36篇
  2003年   38篇
  2002年   40篇
  2001年   37篇
  2000年   42篇
  1999年   43篇
  1998年   12篇
  1997年   14篇
  1996年   9篇
  1995年   8篇
  1993年   11篇
  1992年   27篇
  1991年   29篇
  1990年   19篇
  1989年   16篇
  1988年   7篇
  1987年   11篇
  1985年   7篇
  1984年   13篇
  1983年   7篇
  1982年   10篇
  1981年   7篇
  1980年   6篇
  1979年   4篇
  1978年   7篇
  1977年   6篇
  1976年   6篇
  1975年   4篇
  1974年   6篇
  1973年   7篇
  1972年   5篇
排序方式: 共有1016条查询结果,搜索用时 18 毫秒
41.
42.
The spleen is the main organ for immune defense during infection with Plasmodium parasites and splenomegaly is one of the major symptoms of such infections. Using a rodent model of Plasmodium yoelii infection, MHC class II+CD11c? non‐T, non‐B cells in the spleen were characterized. Although the proportion of conventional dendritic cells was reduced, that of MHC II+CD11c? non‐T, non‐B cells increased during the course of infection. The increase in this subpopulation was dependent on the presence of lymphocytes. Experiments using Rag‐2?/? mice with adoptively transferred normal spleen cells indicated that these cells were non‐lymphoid cells; however, their accumulation in the spleen during infection with P. yoelii depended on lymphocytes. Functionally, these MHC II+CD11c? non‐T, non‐B cells were able to produce the proinflammatory cytokines alpha tumor necrosis factor and interleukin‐6 in response to infected red blood cells, but had only a limited ability to activate antigen‐specific CD4+ T cells. This study revealed a novel interaction between MHC II+CD11c? non‐lymphoid cells and lymphoid cells in the accumulations of these non‐lymphoid cells in the spleen during infection with P. yoelii.
  相似文献   
43.
ABSTRACT

Antioxidant enzymes are essential proteins that maintain cell proliferation potential by protecting against oxidative stress. They are present in many organisms including harmful algal bloom (HAB) species. We previously identified the antioxidant enzyme 2-Cys peroxiredoxin (PRX) in the raphidophyte Chattonella marina. This enzyme specifically decomposes a hydrogen peroxide (H2O2). PRX is the only antioxidant enzyme so far identified in C. marina. This study used mRNA-seq, using Trinity assemble and blastx for annotation, to identify a further five antioxidant enzymes from C. marina: Cu Zn superoxide dismutase (Cu/Zn-SOD), glutathione peroxidase (GPX), catalase (CAT), ascorbate peroxidase (APX) and thioredoxin (TRX). In the gene expression analysis of six enzymes (Cu/Zn-SOD, GPX, CAT, APX, TRX and PRX) using light-acclimated (100 μmol photons m?2 s?1) C. marina cells, only PRX gene expression levels were significantly increased by strong light irradiation (1000 μmol photons m?2 s?1). H2O2 concentration and scavenging activity were also increased and significantly positively correlated with PRX gene expression levels. In dark-acclimated cells, expression levels of all antioxidant enzymes except APX were significantly increased by light irradiation (100 μmol photons m?2 s?1). Expression decreased the following day, with the exception of PRX expression. With the exception of CAT, gene expression of antioxidant enzymes was not significantly induced by artificial H2O2 treatment, although average gene expression levels were slightly increased in some enzymes. Thus, we suggest that light is the main trigger of gene expression, but the resultant oxidative stress is also a possible factor affecting the gene expression of antioxidant enzymes in C. marina.  相似文献   
44.
Quercetin, a naturally occurring flavonoid, has been reported to possess numerous biological activities including activation of adenosine-5’-monophosphate-activated protein kinase (AMPK). We investigated the effects of quercetin intake during lactation on the AMPK activation in the livers of adult offspring programmed by maternal protein restriction during gestation. Pregnant Wistar rats were fed control and low-protein diets during gestation. Following delivery, each dam received a control or 0.2% quercetin-containing control diet during lactation as follows: control on control (CC), control on restricted (LPC) and 0.2% quercetin-containing control on restricted (LPQ). At weaning (week 3), some of the pups from each dam were killed, and the remaining pups (CC, n= 8; LPC, n= 10; LPQ, n= 13) continued to receive a standard laboratory diet and were killed at week 23. Blood chemistry and phosphorylation levels of AMPKα, acetyl-CoA carboxylase (ACC), endothelial nitric oxide synthase (eNOS) and mammalian target of rapamycin (mTOR) in the livers of male offspring were examined. At week 3, the level of phosphorylated AMPK protein in LPQ increased about 1.5- and 2.1-fold compared with LPC and CC, respectively, and the level in LPQ at week 23 increased about 1.9- and 2.9-fold, respectively. A significant increase in phosphorylated ACC and eNOS levels was found in LPQ. There was no significant difference among the three groups in the level of phosphorylated mTOR protein. In conclusion, quercetin intake during lactation up-regulates AMPK activation in the adult offspring of protein-restricted dams and modulates the AMPK pathway in the liver.  相似文献   
45.
Beckwith-Wiedemann syndrome (BWS) is an imprinting-related human disease that is characterized by macrosomia, macroglossia, abdominal wall defects, and variable minor features. BWS is caused by several genetic/epigenetic alterations, such as loss of methylation at KvDMR1, gain of methylation at H19-DMR, paternal uniparental disomy of chromosome 11, CDKN1C mutations, and structural abnormalities of chromosome 11. CDKN1C is an imprinted gene with maternal preferential expression, encoding for a cyclin-dependent kinase (CDK) inhibitor. Mutations in CDKN1C are found in 40 % of familial BWS cases with dominant maternal transmission and in ~5 % of sporadic cases. In this study, we searched for CDKN1C mutations in 37 BWS cases that had no evidence for other alterations. We found five mutations—four novel and one known—from a total of six patients. Four were maternally inherited and one was a de novo mutation. Two frame-shift mutations and one nonsense mutation abolished the QT domain, containing a PCNA-binding domain and a nuclear localization signal. Two missense mutations occurred in the CDK inhibitory domain, diminishing its inhibitory function. The above-mentioned mutations were predicted by in silico analysis to lead to loss of function; therefore, we strongly suspect that such anomalies are causative in the etiology of BWS.  相似文献   
46.
Production of novel transgenic floricultural crops with altered petal properties requires transgenes that confer a useful trait and petal‐specific promoters. Several promoters have been shown to control transgenes in petals. However, all suffer from inherent drawbacks such as low petal specificity and restricted activity during the flowering stage. In addition, the promoters were not examined for their ability to confer petal‐specific expression in a wide range of plant species. Here, we report the promoter of InMYB1 from Japanese morning glory as a novel petal‐specific promoter for molecular breeding of floricultural crops. First, we produced stable InMYB1_1kb::GUS transgenic Arabidopsis and Eustoma plants and characterized spatial and temporal expression patterns under the control of the InMYB1 promoter by histochemical β‐glucuronidase (GUS) staining. GUS staining patterns were observed only in petals. This result showed that the InMYB1 promoter functions as a petal‐specific promoter. Second, we transiently introduced the InMYB1_1 kb::GUS construct into Eustoma, chrysanthemum, carnation, Japanese gentian, stock, rose, dendrobium and lily petals by particle bombardment. GUS staining spots were observed in Eustoma, chrysanthemum, carnation, Japanese gentian and stock. These results showed that the InMYB1 promoter functions in most dicots. Third, to show the InMYB1 promoter utility in molecular breeding, a MIXTA‐like gene function was suppressed or enhanced under the control of InMYB1 promoter in Arabidopsis. The transgenic plant showed a conspicuous morphological change only in the form of wrinkled petals. Based on these results, the InMYB1 promoter can be used as a petal‐specific promoter in molecular breeding of floricultural crops.  相似文献   
47.
48.
49.
Primary aldosteronism is most often caused by aldosterone-producing adenoma (APA) and bi-lateral adrenal hyperplasia. Most APAs are caused by somatic mutations of various ion channels and pumps, the most common being the inward-rectifying potassium channel KCNJ5. Germ line mutations of KCNJ5 cause familial hyperaldosteronism type 3 (FH3), which is associated with severe hyperaldosteronism and hypertension. We present an unusual case of FH3 in a young woman, first diagnosed with primary aldosteronism at the age of 6 years, with bilateral adrenal hyperplasia, who underwent unilateral adrenalectomy (left adrenal) to alleviate hyperaldosteronism. However, her hyperaldosteronism persisted. At the age of 26 years, tomography of the remaining adrenal revealed two different adrenal tumors, one of which grew substantially in 4 months; therefore, the adrenal gland was removed. A comprehensive histological, immunohistochemical, and molecular evaluation of various sections of the adrenal gland and in situ visualization of aldosterone, using matrix-assisted laser desorption/ionization imaging mass spectrometry, was performed. Aldosterone synthase (CYP11B2) immunoreactivity was observed in the tumors and adrenal gland. The larger tumor also harbored a somatic β-catenin activating mutation. Aldosterone visualized in situ was only found in the subcapsular regions of the adrenal and not in the tumors. Collectively, this case of FH3 presented unusual tumor development and histological/molecular findings.  相似文献   
50.
Aptamers can control the biological functions of enzymes, thereby facilitating the development of novel biosensors. While aptamers that inhibit catalytic reactions of enzymes were found and used as signal transducers to sense target molecules in biosensors, no aptamers that amplify enzymatic activity have been identified. In this study, we report G-quadruplex (G4)-forming DNA aptamers that upregulate the peroxidase activity in myoglobin specifically for luminol. Using in vitro selection, one G4-forming aptamer that enhanced chemiluminescence from luminol by myoglobin''s peroxidase activity was discovered. Through our strategy—in silico maturation, which is a genetic algorithm-aided sequence manipulation method, the enhancing activity of the aptamer was improved by introducing mutations to the aptamer sequences. The best aptamer conserved the parallel G4 property with over 300-times higher luminol chemiluminescence from peroxidase activity more than myoglobin alone at an optimal pH of 5.0. Furthermore, using hemin and hemin-binding aptamers, we demonstrated that the binding property of the G4 aptamers to heme in myoglobin might be necessary to exert the enhancing effect. Structure determination for one of the aptamers revealed a parallel-type G4 structure with propeller-like loops, which might be useful for a rational design of aptasensors utilizing the G4 aptamer-myoglobin pair.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号