首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1202篇
  免费   103篇
  1305篇
  2023年   5篇
  2022年   12篇
  2021年   26篇
  2020年   12篇
  2019年   13篇
  2018年   33篇
  2017年   19篇
  2016年   36篇
  2015年   42篇
  2014年   48篇
  2013年   66篇
  2012年   60篇
  2011年   55篇
  2010年   42篇
  2009年   45篇
  2008年   64篇
  2007年   72篇
  2006年   60篇
  2005年   59篇
  2004年   57篇
  2003年   49篇
  2002年   48篇
  2001年   38篇
  2000年   47篇
  1999年   29篇
  1998年   10篇
  1997年   21篇
  1996年   11篇
  1995年   11篇
  1994年   10篇
  1993年   8篇
  1992年   22篇
  1991年   15篇
  1990年   23篇
  1989年   18篇
  1988年   8篇
  1987年   15篇
  1986年   17篇
  1985年   5篇
  1984年   11篇
  1983年   8篇
  1982年   4篇
  1980年   6篇
  1979年   6篇
  1977年   5篇
  1974年   7篇
  1973年   6篇
  1972年   3篇
  1969年   4篇
  1966年   3篇
排序方式: 共有1305条查询结果,搜索用时 15 毫秒
71.
We studied the effects of several plant-growth regulators onthe induction of nodule-like structures on roots of Lotus japonicus,which has been proposed as a candidate for a leguminous plantfor molecular genetic analysis. Contrary to our expectations,the addition of gibberellin A3 (GA3) at concentrations of 10-4M to 10-4 M resulted in the formation of nodule-like structureson roots when seedlings were plated on nitrogen-free Fahraeusagar medium. GA4 also induced such outgrowths but was less activethan GA3. Application of an inhibitor of auxin transport, N-(1-naphthyl)-phthalamicacid (NPA) and of kinetin, which have been reported to inducepseudonodules in other legumes, had no effect on L. japonicus.Microscopic observations showed that GA3-induced nodule-likestructures were caused by cell divisions within the pericycleon the roots. In addition, the outgrowths elicited by GA3 couldbe completely suppressed by the addition of 15 mM potassiumnitrate or ammonium nitrate. These results show that the pericyclecells of the roots of L. japonicus are specifically sensitiveto gibberellins and that potential for cell division might bemodulated by nitrogen compounds. We also examined the effectsof ancymidol and uniconazole [S-3307; (E)-1-(4-chIorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-1-penten-3-ol],two synthetic plant-growth retardants. Both compounds at 3 x10-5 M significantly increased the number of stunted lateralroots. The unusual branching could not be counteracted by theexogenous addition of GA3 but by 10-6 M brassinolide. We discussthe physiological role of brassinolide in the initiation oflateral roots. (Received August 4, 1995; Accepted March 11, 1996)  相似文献   
72.
Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) consists of W1W2 repeats and a unique C-terminal Y1Y2 domain and has been suggested to play an important role in EBV-induced transformation. To identify the cellular factors interacting with EBNA-LP, we performed a yeast two-hybrid screen, using EBNA-LP cDNA containing four W1W2 repeats as bait and an EBV-transformed human peripheral blood lymphocyte cDNA library as the source of cellular genes. Our results were as follows. (i) All three cDNAs in positive yeast colonies were found to encode the same cellular protein, HS1-associated protein X-1 (HAX-1), which is localized mainly in the cytoplasm and has been suggested to be involved in the regulation of B-cell signal transduction and apoptosis. (ii) Mutational analysis of EBNA-LP revealed that the association with HAX-1 is mediated by the W1W2 repeat domain. (iii) A purified chimeric protein consisting of glutathione S-transferase fused to EBNA-LP specifically formed complexes with HAX-1 transiently expressed in COS-7 cells. (iv) When EBNA-LP and HAX-1 were coexpressed in COS-7 cells, EBNA-LP was specifically coimmunoprecipitated with HAX-1. (v) Careful cell fractionation experiments of an EBV-infected lymphoblastoid cell line revealed that EBNA-LP is localized in the cytoplasm as well as in the nucleus. (vi) When EBNA-LP containing four W1W2 repeats was expressed in COS-7 cells, EBNA-LP was detected mainly in the nucleus by immunofluorescence assay. Interestingly, when EBNA-LP containing a single W1W2 repeat was expressed in COS-7 cells, EBNA-LP was localized predominantly in the cytoplasm and was colocalized with HAX-1. These results indicate that EBNA-LP is in fact present and may have a significant function in the cytoplasm, possibly by interacting with and affecting the function of HAX-1.  相似文献   
73.
In mammals, 5,8,11-eicosatrienoic acid (Mead acid, 20:3n − 9) is synthesized from oleic acid during a state of essential fatty acid deficiency (EFAD). Mead acid is thought to be produced by the same enzymes that synthesize arachidonic acid and eicosapentaenoic acid, but the genes and the pathways involved in the conversion of oleic acid to Mead acid have not been fully elucidated. The levels of polyunsaturated fatty acids in cultured cells are generally very low compared to those in mammalian tissues. In this study, we found that cultured cells, such as NIH3T3 and Hepa1–6 cells, have significant levels of Mead acid, indicating that cells in culture are in an EFAD state under normal culture conditions. We then examined the effect of siRNA-mediated knockdown of fatty acid desaturases and elongases on the level of Mead acid, and found that knockdown of Elovl5, Fads1, or Fads2 decreased the level of Mead acid. This and the measured levels of possible intermediate products for the synthesis of Mead acid such as 18:2n − 9, 20:1n − 9 and 20:2n − 9 in the knocked down cells indicate two pathways for the synthesis of Mead acid: pathway 1) 18:1n − 9 → (Fads2) → 18:2n − 9 → (Elovl5) → 20:2n − 9 → (Fads1) → 20:3n − 9 and pathway 2) 18:1n − 9 → (Elovl5) → 20:1n − 9 → (Fads2) → 20:2n − 9 → (Fads1) → 20:3n − 9.  相似文献   
74.
Model legumes such as Lotus japonicus have contributed significantly to the understanding of symbiotic nitrogen fixation. This insight is mainly a result of forward genetic screens followed by map-based cloning to identify causal alleles. The L. japonicus ecotype 'Gifu' was used as a common parent for inter-accession crosses to produce F2 mapping populations either with other L. japonicus ecotypes, MG-20 and Funakura, or with the related species L. filicaulis. These populations have all been used for genetic studies but segregation distortion, suppression of recombination, low polymorphism levels, and poor viability have also been observed. More recently, the diploid species L. burttii has been identified as a fertile crossing partner of L. japonicus. To assess its qualities in genetic linkage analysis and to enable quantitative trait locus (QTL) mapping for a wider range of traits in Lotus species, we have generated and genotyped a set of 163 Gifu × L. burttii recombinant inbred lines (RILs). By direct comparisons of RIL and F2 population data, we show that L. burttii is a valid alternative to MG-20 as a Gifu mapping partner. In addition, we demonstrate the utility of the Gifu × L. burttii RILs in QTL mapping by identifying an Nfr1-linked QTL for Sinorhizobium fredii nodulation.  相似文献   
75.
Vitamin A has diverse biological functions and is essential for human survival. STRA6 is the high-affinity membrane receptor for plasma retinol binding protein (RBP), the principle and specific carrier of vitamin A (retinol) in the blood. It was previously shown that STRA6 couples to lecithin retinol acyltransferase (LRAT) and cellular retinol binding protein I (CRBP-I), but poorly to CRBP-II, for retinol uptake from holo-RBP. STRA6 catalyzes both retinol release from holo-RBP, which is responsible for its retinol uptake activity, and the loading of free retinol into apo-RBP, which can cause retinol efflux. Although STRA6-catalyzed retinol efflux into apo-RBP can theoretically deplete cells of retinoid, it is unclear to what extent this efflux happens and in what context. We show here that STRA6 can couple strongly to both CRBP-I and CRBP-II for retinol efflux to apo-RBP. Strikingly, pure apo-RBP can cause almost complete depletion of retinol taken up by CRBP-I in a STRA6-dependent manner. However, if STRA6 encounters both holo-RBP and apo-RBP (as in blood), holo-RBP blocks STRA6-mediated retinol efflux by competing with apo-RBP’s binding to STRA6 and by counteracting retinol efflux with influx. We also found that STRA6 catalyzes efficient retinol exchange between intracellular CRBP-I and extracellular RBP, even in the presence of holo-RBP. STRA6’s retinol exchange activity may serve to refresh the intracellular retinoid pool. This exchange is also a previously unknown function of CRBP-I and distinguishes CRBP-I from LRAT.  相似文献   
76.
77.
The response of forest productivity to climate extremes strongly depends on ambient environmental and site conditions. To better understand these relationships at a regional scale, we used nearly 800 observation years from 271 permanent long‐term forest monitoring plots across Switzerland, obtained between 1980 and 2017. We assimilated these data into the 3‐PG forest ecosystem model using Bayesian inference, reducing the bias of model predictions from 14% to 5% for forest stem carbon stocks and from 45% to 9% for stem carbon stock changes. We then estimated the productivity of forests dominated by Picea abies and Fagus sylvatica for the period of 1960–2018, and tested for productivity shifts in response to climate along elevational gradient and in extreme years. Simulated net primary productivity (NPP) decreased with elevation (2.86 ± 0.006 Mg C ha?1 year?1 km?1 for P. abies and 0.93 ± 0.010 Mg C ha?1 year?1 km?1 for F. sylvatica). During warm–dry extremes, simulated NPP for both species increased at higher and decreased at lower elevations, with reductions in NPP of more than 25% for up to 21% of the potential species distribution range in Switzerland. Reduced plant water availability had a stronger effect on NPP than temperature during warm‐dry extremes. Importantly, cold–dry extremes had negative impacts on regional forest NPP comparable to warm–dry extremes. Overall, our calibrated model suggests that the response of forest productivity to climate extremes is more complex than simple shift toward higher elevation. Such robust estimates of NPP are key for increasing our understanding of forests ecosystems carbon dynamics under climate extremes.  相似文献   
78.
Drosophila Btk29A is a Tec family nonreceptor tyrosine kinase, the ortholog of which causes X‐linked agammaglobulinemia in humans when mutant. In Btk29AficP mutant ovaries, multiple defects are observed: extrapolar cells form ectopically; osk mRNA fails to accumulate posteriorly in mature oocytes; the shape and alignment of follicle cells are grossly distorted. All these phenotypes are rescued by selectively overexpressing the type 2 isoform of wild‐type Btk29A in follicle cells. Expression of certain proteins enriched in adherens junctions is markedly affected in Btk29AficP mutants; the anterior–posterior gradient normally observed in the expression of DE‐Cadherin and Armadillo are lost and Canoe is sequestered from adherens junctions. Intriguingly, tyrosine phosphorylation of Canoe is reduced in Btk29AficP mutants. It is proposed that Btk29A is required for the establishment of egg chamber polarity presumably through the regulation of subcellular localization of its downstream proteins, including Cno.  相似文献   
79.
Our previous studies have shown that brain‐derived neurotrophic factor (BDNF) enhances bone/cementum‐related protein gene expression through the TrkB‐c‐Raf‐ERK1/2‐Elk‐1 signaling pathway in cementoblasts, which play a critical role in the establishment of a functional periodontal ligament. To clarify how BDNF regulates survival in cementoblasts, we examined its effects on cell death induced by serum starvation in immortalized human cementoblast‐like (HCEM) cells. BDNF inhibited the death of HCEM cells. Small‐interfering RNA (siRNA) for TRKB, a high affinity receptor for BDNF, and for Bcl‐2, countered the BDNF‐induced decrease in dead cell number. In addition, LY294002, a PI3‐kinase inhibitor; SH‐6, an Akt inhibitor; and PDTC, a nuclear factor kappa B (NF‐κB) inhibitor, but not PD98059, an ERK1/2 inhibitor, abolished the protective effect of BDNF against cell death. BDNF enhanced phosphorylated Akt levels, NF‐κB activity in the nucleus, Bcl‐2 mRNA levels, and mitochondrial membrane potential. The blocking of BDNF's actions by treatment with siRNA in all cases for TRKB and Bcl‐2, LY294002, SH‐6, and PDTC suppressed the enhancement. These findings provide the first evidence that a TrkB‐PI3‐kinase‐Akt‐NF‐κB‐Bcl‐2 signaling pathway triggered by BDNF and the subsequent protective effect of BDNF on mitochondrial membrane potential are required to rescue HCEM cells from serum starvation‐induced cell death. Furthermore, the survival and increased expression of bone/cementum‐related proteins induced by BDNF in HCEM cells occur through different signaling pathways. J. Cell. Physiol. 221: 696–706, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
80.
FI-Carboxymethylcellulase (cmc1; family 12) is one of the endoglucanases of Aspergillus aculeatus and consists of single polypeptide chain of 221 amino acids. The cmc1 gene was expressed in Aspergillus oryzae niaD300 (niaD) under promoter 8142. The plasmid pCMG14 carrying the cmc1 gene at PstI site was used as a source of the gene (920 bp) and Aspergillus oryzae was successfully transformed by the plasmid pNAN-cmc1 (harboring cmc1 gene). The plasmid was integrated in Aspergillus oryzae niaD300 genome at niaD locus and the transformed fungus constitutively produced very high amounts of endoglucanases when grown on glucose, maltose, soluble starch and wheat bran.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号