首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2492篇
  免费   191篇
  国内免费   202篇
  2885篇
  2024年   7篇
  2023年   31篇
  2022年   77篇
  2021年   107篇
  2020年   73篇
  2019年   91篇
  2018年   92篇
  2017年   67篇
  2016年   107篇
  2015年   165篇
  2014年   176篇
  2013年   213篇
  2012年   216篇
  2011年   194篇
  2010年   139篇
  2009年   106篇
  2008年   125篇
  2007年   123篇
  2006年   104篇
  2005年   102篇
  2004年   90篇
  2003年   94篇
  2002年   81篇
  2001年   44篇
  2000年   28篇
  1999年   25篇
  1998年   17篇
  1997年   10篇
  1996年   11篇
  1995年   8篇
  1994年   7篇
  1992年   12篇
  1991年   9篇
  1990年   6篇
  1989年   12篇
  1988年   4篇
  1987年   5篇
  1986年   9篇
  1985年   9篇
  1984年   6篇
  1983年   6篇
  1982年   4篇
  1981年   5篇
  1979年   5篇
  1977年   10篇
  1976年   5篇
  1975年   6篇
  1974年   5篇
  1973年   6篇
  1969年   4篇
排序方式: 共有2885条查询结果,搜索用时 0 毫秒
61.
Microbial destabilization induced by pathogen infection has severely affected plant quality and output, such as Anoectochilus roxburghii, an economically important herb. Soft rot is the main disease that occurs during A. roxburghii culturing. However, the key members of pathogens and their interplay with non-detrimental microorganisms in diseased plants remain largely unsolved. Here, by utilizing a molecular ecological network approach, the interactions within bacterial communities in endophytic compartments and the surrounding soils during soft rot infection were investigated. Significant differences in bacterial diversity and community composition between healthy and diseased plants were observed, indicating that the endophytic communities were strongly influenced by pathogen invasion. Endophytic stem communities of the diseased plants were primarily derived from roots and the root endophytes were largely derived from rhizosphere soils, which depicts a possible pathogen migration image from soils to roots and finally the stems. Furthermore, interactions among microbial members indicated that pathogen invasion might be aided by positively correlated native microbial members, such as Enterobacter and Microbacterium, who may assist in colonization and multiplication through a mutualistic relationship in roots during the pathogen infection process. Our findings will help open new avenues for developing more accurate strategies for biological control of A. roxburghii bacterial soft rot disease.  相似文献   
62.
NADH dehydrogenase activity was characterized in the mitochondrial lysates of Phytomonas serpens, a trypanosomatid flagellate parasitizing plants. Two different high molecular weight NADH dehydrogenases were characterized by native PAGE and detected by direct in-gel activity staining. The association of NADH dehydrogenase activities with two distinct multisubunit complexes was revealed in the second dimension performed under denaturing conditions. One subunit present in both complexes cross-reacted with the antibody against the 39 kDa subunit of bovine complex I. Out of several subunits analyzed by MS, one contained a domain characteristic for the LYR family subunit of the NADH:ubiquinone oxidoreductases. Spectrophotometric measurement of the NADH:ubiquinone 10 and NADH:ferricyanide dehydrogenase activities revealed their different sensitivities to rotenone, piericidin, and diphenyl iodonium.  相似文献   
63.
The root of Scutellaria baicalensis, called Huangqin in Chinese, is one of the most commonly used traditional Chinese medicines for the treatment of hepatitis, tumors, diarrhea, and inflammatory diseases. The major chemical constituents of Huangqin are flavonoids. In the present paper, HPLC-DAD-ESI-MS(n) was used to analyze flavonoids in the roots of S. baicalensis. A total of 26 flavonoids were identified or tentatively characterized, including 5 C-glycosides, 12 O-glycosides, and 9 free aglycones. Two C-glycosides, apigenin-6-C-glucyl-8-C-arabinoside and chrysin-6,8-di-C-glucoside, together with some O-glycosides, are reported from S. baicalensis for the first time. This method is simple, reliable and sensitive, and could be used for the quality control of Huangqin and its related preparations.  相似文献   
64.
65.
Cardiac remodeling is associated with inflammation and apoptosis. Galangin, as a natural flavonol, has the potent function of regulating inflammation and apoptosis, which are factors related to cardiac remodeling. Beginning 3 days after aortic banding (AB) or Sham surgery, mice were treated with galangin for 4 weeks. Cardiac remodeling was assessed according to echocardiographic parameters, histological analyses, and hypertrophy and fibrosis markers. Our results showed that galangin administration attenuated cardiac hypertrophy, dysfunction, and fibrosis response in AB mice and angiotensin II-treated H9c2 cells. The inhibitory action of galangin in cardiac remodeling was mediated by MEK1/2–extracellular-regulated protein kinases 1/2 (ERK1/2)–GATA4 and phosphoinositide 3-kinase (PI3K)–protein kinase B (AKT)–glycogen synthase kinase 3β (GSK3β) activation. Furthermore, we found that galangin inhibited inflammatory response and apoptosis. Our findings suggest that galangin protects against cardiac remodeling through decreasing inflammatory responses and apoptosis, which are associated with inhibition of the MEK1/2–ERK1/2–GATA4 and PI3K–AKT–GSK3β signals.  相似文献   
66.
67.
68.
Autoimmune hepatitis (AIH) is an immune-mediated chronic inflammatory liver disease, and its pathogenesis is not fully understood. Our previous study discovered that receptor interacting protein kinase 3 (RIP3) is correlated with serum transaminase levels in AIH patients. However, its role and underlying mechanism in AIH are poorly understood. Here, we detected the increased expression and activation of RIP3 in livers of patients and animal models with AIH. The inhibition of RIP3 kinase by GSK872 prevented concanavalin A (ConA)-induced immune-mediated hepatitis (IMH) by reduced hepatic proinflammatory cytokines and immune cells including Th17 cells and macrophages. Further experiments revealed that RIP3 inhibition resulted in an increase in CD11b+Gr1+ myeloid-derived suppressor cells (MDSCs) with immunoregulatory properties in the liver, spleen, and peripheral blood. Moreover, the depletion of Gr-1+ MDSCs abrogated the protective effect and immune suppression function of GSK872 in ConA-induced IMH. Altogether, our data demonstrate that RIP3 blockade prevents ConA-induced IMH through promoting MDSCs infiltration. Inhibition of RIP3 kinase may be a novel therapeutic avenue for AIH treatment.  相似文献   
69.
Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.

A review of major research advances in plant immunity during the last three decades and individual characterized immune receptors, their immune signaling pathways, and interactions between immune systems  相似文献   
70.

Background

Within-field multiple crop species intercropping is well documented and used for disease control, but the underlying mechanisms are still unclear. As roots are the primary organ for perceiving signals in the soil from neighboring plants, root behavior may play an important role in soil-borne disease control.

Principal Findings

In two years of field experiments, maize/soybean intercropping suppressed the occurrence of soybean red crown rot, a severe soil-borne disease caused by Cylindrocladium parasiticum (C. parasiticum). The suppressive effects decreased with increasing distance between intercropped plants under both low P and high P supply, suggesting that root interactions play a significant role independent of nutrient status. Further detailed quantitative studies revealed that the diversity and intensity of root interactions altered the expression of important soybean PR genes, as well as, the activity of corresponding enzymes in both P treatments. Furthermore, 5 phenolic acids were detected in root exudates of maize/soybean intercropped plants. Among these phenolic acids, cinnamic acid was released in significantly greater concentrations when intercropped maize with soybean compared to either crop grown in monoculture, and this spike in cinnamic acid was found dramatically constrain C. parasiticum growth in vitro.

Conclusions

To the best of our knowledge, this study is the first report to demonstrate that intercropping with maize can promote resistance in soybean to red crown rot in a root-dependent manner. This supports the point that intercropping may be an efficient ecological strategy to control soil-borne plant disease and should be incorporated in sustainable agricultural management practices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号