首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5313篇
  免费   398篇
  国内免费   409篇
  6120篇
  2024年   12篇
  2023年   75篇
  2022年   195篇
  2021年   299篇
  2020年   182篇
  2019年   218篇
  2018年   210篇
  2017年   182篇
  2016年   262篇
  2015年   359篇
  2014年   385篇
  2013年   456篇
  2012年   485篇
  2011年   438篇
  2010年   283篇
  2009年   224篇
  2008年   270篇
  2007年   233篇
  2006年   192篇
  2005年   170篇
  2004年   153篇
  2003年   141篇
  2002年   123篇
  2001年   76篇
  2000年   52篇
  1999年   54篇
  1998年   33篇
  1997年   30篇
  1996年   34篇
  1995年   20篇
  1994年   26篇
  1993年   13篇
  1992年   23篇
  1991年   20篇
  1990年   17篇
  1989年   20篇
  1988年   10篇
  1987年   8篇
  1986年   13篇
  1985年   15篇
  1984年   8篇
  1983年   9篇
  1981年   7篇
  1979年   8篇
  1978年   5篇
  1977年   11篇
  1976年   5篇
  1975年   6篇
  1974年   6篇
  1973年   8篇
排序方式: 共有6120条查询结果,搜索用时 15 毫秒
151.
This research was conducted to distinguish between the separate effects of the Phanerochaete chrysosporium inoculation and sample property heterogeneity induced by different inoculation regimes on the indigenous bacterial communities during agricultural waste composting. P. chrysosporium was inoculated during different phases. The bacterial community abundance and structure were determined by quantitative PCR and denaturing gradient gel electrophoresis analysis, respectively. Results indicated a significant stimulatory effect of P. chrysosporium inoculation on the bacterial community abundance. The bacterial community abundance significantly coincided with pile temperature, ammonium, and nitrate (P?<?0.006). Variance partition analysis showed that the P. chrysosporium inoculation directly explained 20.5 % (P?=?0.048) of the variation in the bacterial communities, whereas the sample property changes induced by different inoculation regimes indirectly explained up to 35.1 % (P?=?0.002). The bacterial community structure was significantly related to pile temperature, water-soluble carbon (WSC), and C/N ratio when P. chrysosporium were inoculated. The C/N ratio solely explained 7.9 % (P?=?0.03) of the variation in community structure, whereas pile temperature and WSC explained 7.7 % (P?=?0.026) and 7.5 % (P?=?0.034) of the variation, respectively. P. chrysosporium inoculation affected the indigenous bacterial communities most probably indirectly through increasing pile temperature, enhancing the substrate utilizability, and changing other physico-chemical factors.  相似文献   
152.
A modified metabolic model for mixed culture fermentation (MCF) is proposed with the consideration of an energy conserving electron bifurcation reaction and the transport energy of metabolites. The production of H2 related to NADH/NAD+ and Fdred/Fdox is proposed to be divided in three processes in view of energy conserving electron bifurcation reaction. This assumption could fine‐tune the intracellular redox balance and regulate the distribution of metabolites. With respect to metabolite transport energy, the proton motive force is considered to be constant, while the transport rate coefficient is proposed to be proportional to the octanol–water partition coefficient. The modeling results for a glucose fermentation in a continuous stirred tank reactor show that the metabolite distribution is consistent with the literature: (1) acetate, butyrate, and ethanol are main products at acidic pH, while the production shifts to acetate and propionate at neutral and alkali pH; (2) the main products acetate, ethanol, and butyrate shift to ethanol at higher glucose concentration; (3) the changes for acetate and butyrate are following an increasing hydrogen partial pressure. The findings demonstrate that our modified model is more realistic than previous proposed model concepts. It also indicates that inclusion of an energy conserving electron bifurcation reaction and metabolite transport energy for MCF is sound in the viewpoint of biochemistry and physiology. Biotechnol. Bioeng. 2013; 110: 1884–1894. © 2013 Wiley Periodicals, Inc.  相似文献   
153.
Retinoid X receptor (RXR) and Histone deacetylase (HDAC) are considered important targets for anti-cancer therapy due to their crucial roles in genetic or epigenetic regulations of cancer development and progression. Here, we have designed and synthesized a novel compound which targets both RXR and HADC. This dual-targeting agent is derived from bexarotene and suberoylanilide hydroxamic acid (SAHA), prototypical RXR agonist and HDAC inhibitor, respectively. Molecular docking studies demonstrate that this agent has a relatively strong affinity to RXR and HADC. Importantly, it presents the potentials of activation of RXR and inhibition of HDAC in both cell-free and whole-cell assays, and displays anti-proliferative effect on representative cancer cell lines and drug-resistant cancer cell lines.  相似文献   
154.
The Tudor-sn protein, which contains four staphylococcal nuclease domains and a Tudor domain, is a ubiquitous protein found in almost all organisms. It has been reported that Tudor-sn in mammals participates in various cellular pathways involved in gene regulation, cell growth, and development. In insects, we have previously identified a Tudor-sn ortholog in the silkworm, Bombyx mori, and detected its interactions between with Argonaute proteins. The role of Tudor-sn in silkworm, however, still remains largely unknown. In this study, we demonstrated that silkworm Tudor-sn is a stress granule (SG) protein, and determined its interactions with other SG proteins using Bimolecular Fluorescence Complementation assay and Insect Two-Hybrid method. Depletions of Argonaute proteins and SG-marker protein Tia1 by RNAi impaired the involvement of Tudor-sn in the SG formation. Protein domain deletion analysis of Tudor-sn demonstrated that SN2 is the key domain required for the aggregation of Tudor-sn in SGs.  相似文献   
155.
This study determined the effects of dietary branched-chain amino acids (AA) (BCAA) on growth performance, expression of jejunal AA and peptide transporters, and the colonic microflora of weanling piglets fed a low-protein (LP) diet. One hundred and eight Large White × Landrace × Duroc piglets (weaned at 28 days of age) were fed a normal protein diet (NP, 20.9 % crude protein), an LP diet (LP, 17.1 % crude protein), or an LP diet supplemented with BCAA (LP + BCAA, 17.9 % crude protein) for 14 days. Dietary protein restriction reduced piglet growth performance and small-intestinal villous height, which were restored by BCAA supplementation to the LP diet to values for the NP diet. Serum concentrations of BCAA were reduced in piglets fed the LP diet while those in piglets fed the LP + BCAA diet were similar to values for the NP group. mRNA levels for Na+-neutral AA exchanger-2, cationic AA transporter-1, b0,+ AA transporter, and 4F2 heavy chain were more abundant in piglets fed the LP + BCAA diet than the LP diet. However, mRNA and protein levels for peptide transporter-1 were lower in piglets fed the LP + BCAA diet as compared to the LP diet. The colonic microflora did not differ among the three groups of pigs. In conclusion, growth performance, intestinal development, and intestinal expression of AA transporters in weanling piglets are enhanced by BCAA supplementation to LP diets. Our findings provide a new molecular basis for further understanding of BCAA as functional AA in animal nutrition.  相似文献   
156.
A structural study of the water-soluble dextran made by Leuconostoc mesenteroides strain C (NRRL B-1298) was conducted by enzymic degradation and subsequent 13C-NMR analysis of the native dextran and its limit dextrins. The α-l,2-debranching enzyme removed almost all of the branched D-glucose residues, and gave a limit dextrin having a much longer sequence of the internal chain length (degree of linearity: n = 24.5 compared with the value of n = 3.3 for the native dextran). The degree of hydrolysis with debranching enzyme corresponded to the content of α-1,2-linkages determined by chemical methods, which suggested that most of the α-l,2-linkages in the dextran B-1298 constituted branch points of a single D-glucose residue. A synergistic increase of susceptibility of the dextran B-1299 was observed by simultaneous use of debranching enzyme and endodex-tranase. 13C-NMR spectral analysis indicated the similarity of structure of dextran B-1298 to that of B-1396, rather than that of B-1299. Occurrence of α-l,3-linkages in the limit dextrin was supported by a newly visualized chemical shift at 83.7 ppm.  相似文献   
157.

Background

Malaria presents a diagnostic challenge in areas where both Plasmodium falciparum and P.vivax are co-endemic. Bivalent Rapid Diagnostic tests (RDTs) showed promise as diagnostic tools for P.falciparum and P.vivax. To assist national malaria control programme in the selection of RDTs, commercially available seven malaria RDTs were evaluated in terms of their performance with special reference to heat stability.

Methodology/Principal Findings

This study was undertaken in four forested districts of central India (July, 2011– March, 2012). All RDTs were tested simultaneously in field along with microscopy as gold standard. These RDTs were stored in their original packing at 25°C before transport to the field or they were stored at 35°C and 45°C upto 100 days for testing the performance of RDTs at high temperature. In all 2841 patients with fever were screened for malaria of which 26% were positive for P.falciparum, and 17% for P.vivax. The highest sensitivity of any RDT for P.falciparum was 98% (95% CI; 95.9–98.8) and lowest sensitivity was 76% (95% CI; 71.7–79.6). For P.vivax highest and lowest sensitivity for any RDT was 80% (95% CI; 94.9 - 83.9) and 20% (95% CI; 15.6–24.5) respectively. Heat stability experiments showed that most RDTs for P.falciparum showed high sensitivity at 45°C upto 90 days. While for P.vivax only two RDTs maintained good sensitivity upto day 90 when compared with RDTs kept at room temperature. Agreement between observers was excellent for positive and negative readings for both P.falciparum and P.vivax (Kappa >0.6–0.9).

Conclusion

This is first field evaluation of RDTs regarding their temperature stability. Although RDTs are useful as diagnostic tool for P.falciparum and P.vivax even at high temperature, the quality of RDTs should be regulated and monitored more closely.  相似文献   
158.
Vascular endothelial cells often change their phenotype to adapt to their local microenvironment. Here we report that the vascular endothelial adhesion molecule nepmucin/CD300LG, which is implicated in lymphocyte binding and transmigration, shows unique expression patterns in the microvascular endothelial cells of different tissues. Under physiological conditions, nepmucin/CD300LG was constitutively and selectively expressed at the luminal surface of the small arterioles, venules, and capillaries of most tissues, but it was only weakly expressed in the microvessels of the splenic red pulp and thymic medulla. Furthermore, it was barely detectable in immunologically privileged sites such as the brain, testis, and uterus. The nepmucin/CD300LG expression rapidly decreased in lymph nodes receiving acute inflammatory signals, and this loss was mediated at least in part by TNF-α. It was also down-regulated in tumors and tumor-draining lymph nodes, indicating that nepmucin/CD300LG expression is negatively regulated by locally produced signals under these circumstances. In contrast, nepmucin/CD300LG was induced in the high endothelial venule-like blood vessels of chronically inflamed pancreatic islets in an animal model of non-obese diabetes. Interestingly, the activated CD4+ T cells infiltrating the inflamed pancreas expressed high levels of the nepmucin/CD300LG ligand(s), supporting the idea that nepmucin/CD300LG and its ligand interactions are locally involved in pathological T cell trafficking. Taken together, these observations indicate that the nepmucin/CD300LG expression in microvascular endothelial cells is influenced by factor(s) that are locally produced in tissues, and that its expression is closely correlated with the level of leukocyte infiltration in certain tissues.  相似文献   
159.
Hyperuricemia (HU) often progresses to combine with non-alcoholic fatty liver disease (NAFLD) in the clinical scenario, which further exacerbates metabolic disorders; early detection of biomarkers, if obtained during the HU progression, may be beneficial for preventing its combination with NAFLD. This study aimed to decipher the biomarkers and mechanisms of the development of steatosis in HU. Four groups of subjects undergoing health screening, including healthy subjects, subjects with HU, subjects with HU combined with NAFLD (HU+NAFLD) and subjects with HU initially and then with HU+NAFLD one year later (HU→HU+NAFLD), were recruited in this study. The metabolic profiles of all subjects’ serum were analyzed by liquid chromatography quadruple time-of-flight mass spectrometry. The metabolomic data from subjects with HU and HU+NAFLD were compared, and the biomarkers for the progression from HU to HU+NAFLD were predicted. The metabolomic data from HU→HU+NAFLD subjects were collected for further verification. The results showed that the progression was associated with disturbances of phospholipase metabolism, purine nucleotide degradation and Liver X receptor/retinoic X receptor activation as characterized by up-regulated phosphatidic acid, cholesterol ester (18:0) and down-regulated inosine. These metabolic alterations may be at least partially responsible for the development of steatosis in HU. This study provides a new paradigm for better understanding and further prevention of disease progression.  相似文献   
160.
Xiao  Yunhua  Liu  Xueduan  Liang  Yili  Niu  Jiaojiao  Zhang  Xian  Ma  Liyuan  Hao  Xiaodong  Gu  Yabin  Yin  Huaqun 《Applied microbiology and biotechnology》2016,100(22):9745-9756
Applied Microbiology and Biotechnology - Although the taxonomical/phylogenetic diversity of microbial communities in biological heap leaching systems has been investigated, the diversity of...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号