首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2501篇
  免费   120篇
  国内免费   4篇
  2023年   21篇
  2022年   38篇
  2021年   77篇
  2020年   48篇
  2019年   58篇
  2018年   92篇
  2017年   63篇
  2016年   74篇
  2015年   110篇
  2014年   143篇
  2013年   195篇
  2012年   192篇
  2011年   175篇
  2010年   109篇
  2009年   111篇
  2008年   104篇
  2007年   94篇
  2006年   97篇
  2005年   80篇
  2004年   77篇
  2003年   63篇
  2002年   70篇
  2001年   50篇
  2000年   43篇
  1999年   37篇
  1998年   12篇
  1997年   8篇
  1996年   17篇
  1995年   10篇
  1994年   15篇
  1993年   7篇
  1992年   21篇
  1991年   22篇
  1990年   16篇
  1989年   27篇
  1988年   24篇
  1987年   23篇
  1986年   17篇
  1985年   21篇
  1984年   21篇
  1983年   8篇
  1982年   15篇
  1981年   8篇
  1980年   11篇
  1979年   19篇
  1978年   12篇
  1977年   13篇
  1976年   9篇
  1975年   7篇
  1970年   5篇
排序方式: 共有2625条查询结果,搜索用时 31 毫秒
81.
82.
83.
84.
The use of medicinal plants for different therapeutic values is well documented in African continent. African diverse biodiversity hotspots provide a wide range of endemic species, which ensures a potential medicinal value. The feasible conservation approach and sustainable harvesting for the medicinal species remains a huge challenge. However, conservation approach through different biotechnological tools such as micropropagation, somatic embryogenesis, synthetic seed production, hairy root culture, molecular markers based study and cryopreservation of endemic African medicinal species is much crucial. In this review, an attempt has been made to provide different in vitro biotechnological approaches for the conservation of African medicinal species. The present review will be helpful in further technology development and deciding the priorities at decision-making levels for in vitro conservation and sustainable use of African medicinal species.  相似文献   
85.
Prasad  Archana  Patel  Preeti  Pandey  Shatrujeet  Niranjan  Abhishek  Misra  Pratibha 《Protoplasma》2020,257(2):561-572
Protoplasma - Growth and production kinetics of three important glycoalkaloids viz. α-solanine, solanidine, and solasodine in two contrasting prickly and prickleless plants of Solanum viarum...  相似文献   
86.
Abstract

Mutation in two genes deglycase gene (DJ-1) and retromer complex component gene (VPS35) are linked with neurodegenerative disorder such as Parkinson's disease, Huntington's disease, and Alzheimer's disease. DJ-1 gene located at 1p36 chromosomal position and involved in PD pathogenesis through many pathways including mitochondrial dysfunction and oxidative injury. VPS35 gene located at 16q13-q21 chromosomal position and the two pathways, the Wnt signaling pathway, and retromer-mediated DMT1 missorting are proposed for basis of VPS35 related PD. The study focuses on identifying most deleterious SNPs through computational analysis. Result obtained from various bioinformatics tools shows that D149A is most deleterious in DJ-1 and A54W, R365H, and V717M are most deleterious in VPS35. To understand the functionality of protein comparative modeling of DJ-1 and VPS35 native and mutants was done by MODELLER. The generated structures are validated by two web servers–ProSa and RAMPAGE. Molecular dynamic simulation (MDS) analysis done for the most validated structures to know the functional and structural nature of native and mutants protein of DJ-1 and VPS35. Native structure of DJ-1 and VPS35 show more flexibility through MDS analysis. DJ-1 D149A mutant structures become more compact which shows the structural perturbation and loss of DJ-1 protein function which in turn are probable cause for PD. A54W, R365H, and V717M mutant protein of VPS35 also shows compactness which cause structure perturbation and absence of retromer function which likely to be linked to PD pathogenesis. This in silico study may provide a new insight for fundamental molecular mechanism involved in Parkinson’s disease.

Communicated by Ramaswamy H. Sarma  相似文献   
87.
Molecular Biology Reports - Promoter methylation mediated silencing of tumor suppressor genes plays an important role in the tumorigenesis of colorectal carcinoma (CRC). Tumor suppressor gene,...  相似文献   
88.
Use of chemical activator for the management of root-knot disease in medicinal and aromatic plants can become an attractive alternative to traditionally used nematicides. Large numbers of chemical molecules are present in the plants and are involved in the induction of different types of proteins. The purpose of our research study is to explore the possibilities of resistance factors that are inherent in the plant by treating them with few chemical activators to activate against root-knot nematode infection. Efforts were made to achieve a satisfactory suppression of root-knot nematode, Meloidogyne incognita, a serious menace to successful cultivation of chamomile, Matricaria recutita L. Rauch (syn. Matricaria chamomilla L. Fain. Asteraceae) causing root-knot disease through use of different chemical activators. Here we examined selected groups of resistance activator viz. Isonicotinamide, 2-chloronicotinic acid, 5-nitrosalicylic acid, 4-chlorosalicylic acid, DL-2 aminobutyric acid, 2-aminobutyric acid, O-acetylsalicylic acid, 4-amino salicylic acid, salicylic acid and these were used as soil drench using 3 week old seedlings transplanted to root-knot nematode infested pots. Maximum reduction in root-knot severity and nematode population occurred with 4-chlorosalicylic acid, O-acetyl salicylic acid, 2-chloronicotinic acid and gave significant flower yield advantages. Present experiment suggests a strong possibility of these activators in integrated management for protection against plant parasitic nematodes.  相似文献   
89.
Tapping panel dryness (TPD) syndrome affecting rubber tree (Hevea brasiliensis) is known to reduce natural latex production. Its aetiology remains ambiguous despite long years of research. A low molecular weight RNA similar to viroid RNA was isolated from TPD-affected samples of rubber trees. In the present study, a modified return-polyacrylamide gel electrophoresis procedure was standardised. The viroid-like low molecular weight (LMW) RNA was found associated with leaf, bark and root tissues and rubber seedlings. The technique was employed to detect LMW RNA in different clones of rubber planted in different locations and in bud-grafted plants. The LMW RNA isolated from TPD-affected trees was found infectious on seedlings of tomato cv Pusa Ruby. The LMW RNA was reisolated from symptomatic tomato leaves but not from control plants. This is for the first time that a biotic agent, a viroid RNA, is found consistently associated with the syndrome. The technology developed can be useful to demonstrate the onset of TPD in untapped trees in the absence of other methods such as nucleic acid hybridisation.  相似文献   
90.
Dry root rot caused by Rhizoctonia bataticola (Macrophomina phaseolina) of chickpea (Cicer arietinum L.) is gaining importance in the changed scenario of climate when growing crop is predisposed to high temperature and moisture stress. Being mainly a soil-inhabiting pathogen, many environmental and soil factors are responsible for the development of disease. No systematic research related to the biology, ecology and epidemiology of dry root rot in chickpea has been conducted so far. Research is needed to improve the identification and characterisation of variability within its epidemiological and pathological niches. Limited literature available on host plant resistance for dry root rot indicated lack of resistant sources for this disease. The present article discusses current status of the disease in the context of climate change and possible management options to alleviate the problem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号