首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1001篇
  免费   48篇
  国内免费   1篇
  2023年   7篇
  2022年   23篇
  2021年   28篇
  2020年   11篇
  2019年   26篇
  2018年   35篇
  2017年   27篇
  2016年   37篇
  2015年   50篇
  2014年   77篇
  2013年   75篇
  2012年   87篇
  2011年   91篇
  2010年   54篇
  2009年   43篇
  2008年   36篇
  2007年   52篇
  2006年   36篇
  2005年   35篇
  2004年   39篇
  2003年   27篇
  2002年   31篇
  2001年   9篇
  2000年   9篇
  1999年   4篇
  1997年   4篇
  1996年   6篇
  1995年   2篇
  1994年   8篇
  1992年   8篇
  1991年   8篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   3篇
  1985年   11篇
  1984年   10篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1976年   2篇
  1973年   1篇
  1972年   4篇
  1970年   1篇
  1969年   3篇
  1967年   2篇
  1950年   1篇
排序方式: 共有1050条查询结果,搜索用时 359 毫秒
21.
The use of medicinal plants for different therapeutic values is well documented in African continent. African diverse biodiversity hotspots provide a wide range of endemic species, which ensures a potential medicinal value. The feasible conservation approach and sustainable harvesting for the medicinal species remains a huge challenge. However, conservation approach through different biotechnological tools such as micropropagation, somatic embryogenesis, synthetic seed production, hairy root culture, molecular markers based study and cryopreservation of endemic African medicinal species is much crucial. In this review, an attempt has been made to provide different in vitro biotechnological approaches for the conservation of African medicinal species. The present review will be helpful in further technology development and deciding the priorities at decision-making levels for in vitro conservation and sustainable use of African medicinal species.  相似文献   
22.
Length–weight relationships (LWRs) were estimated for five deep sea fishes viz. Astronesthes martensii, Glyptophidium macropus, Neobythites multistriatus, Physiculus roseus, Synagrops japonicus from Kerala, south west coast of India. Fishes were collected from commercial trawlers monthly from February 2018 to March 2019 operating at depth ranged from 270 m (Lat. 9°29.35′ N, Long. 75°44.74′ E) to 350 m (Lat. 9°26. 49′ N, Long. 75°42.36′ E) in the south east Arabian Sea. Correlation coefficients (r2) were found high for all species, with b value ranged from 2.923 to 3.404.  相似文献   
23.
Dry root rot caused by Rhizoctonia bataticola (Macrophomina phaseolina) of chickpea (Cicer arietinum L.) is gaining importance in the changed scenario of climate when growing crop is predisposed to high temperature and moisture stress. Being mainly a soil-inhabiting pathogen, many environmental and soil factors are responsible for the development of disease. No systematic research related to the biology, ecology and epidemiology of dry root rot in chickpea has been conducted so far. Research is needed to improve the identification and characterisation of variability within its epidemiological and pathological niches. Limited literature available on host plant resistance for dry root rot indicated lack of resistant sources for this disease. The present article discusses current status of the disease in the context of climate change and possible management options to alleviate the problem.  相似文献   
24.
Ca2+ influx by store-operated Ca2+ channels (SOCs) mediates all Ca2+-dependent cell functions, but excess Ca2+ influx is highly toxic. The molecular components of SOC are the pore-forming Orai1 channel and the endoplasmic reticulum Ca2+ sensor STIM1. Slow Ca2+-dependent inactivation (SCDI) of Orai1 guards against cell damage, but its molecular mechanism is unknown. Here, we used homology modeling to identify a conserved STIM1(448–530) C-terminal inhibitory domain (CTID), whose deletion resulted in spontaneous clustering of STIM1 and full activation of Orai1 in the absence of store depletion. CTID regulated SCDI by determining access to and interaction of the STIM1 inhibitor SARAF with STIM1 Orai1 activation region (SOAR), the STIM1 domain that activates Orai1. CTID had two lobes, STIM1(448–490) and STIM1(490–530), with distinct roles in mediating access of SARAF to SOAR. The STIM1(448–490) lobe restricted, whereas the STIM1(490–530) lobe directed, SARAF to SOAR. The two lobes cooperated to determine the features of SCDI. These findings highlight the central role of STIM1 in SCDI and provide a molecular mechanism for SCDI of Orai1.  相似文献   
25.
Potential declines in native pollinator communities and increased reliance on pollinator‐dependent crops have raised concerns about native pollinator conservation and dispersal across human‐altered landscapes. Bumble bees are one of the most effective native pollinators and are often the first to be extirpated in human‐altered habitats, yet little is known about how bumble bees move across fine spatial scales and what landscapes promote or limit their gene flow. In this study, we examine regional genetic differentiation and fine‐scale relatedness patterns of the yellow‐faced bumble bee, Bombus vosnesenskii, to investigate how current and historic habitat composition impact gene flow. We conducted our study across a landscape mosaic of natural, agricultural and urban/suburban habitats, and we show that B. vosnesenskii exhibits low but significant levels of differentiation across the study system (FST = 0.019, Dest = 0.049). Most importantly, we reveal significant relationships between pairwise FST and resistance models created from contemporary land use maps. Specifically, B. vosnesenskii gene flow is most limited by commercial, industrial and transportation‐related impervious cover. Finally, our fine‐scale analysis reveals significant but declining relatedness between individuals at the 1–9 km spatial scale, most likely due to local queen dispersal. Overall, our results indicate that B. vosnesenskii exhibits considerable local dispersal and that regional gene flow is significantly limited by impervious cover associated with urbanization.  相似文献   
26.
27.

Background

Optimum efficiency of the folate pathway is considered essential for adequate ovarian function. 677 C>T substitution in the 5, 10-methylene tertrahydrofolatereductase (MTHFR) gene compromises activity of the MTHFR enzyme by about 50%. The significance of correlation between 677C>T substitution and PCOS remains dubious due to the low power of published studies.

Methods and Results

We analyzed MTHFR 677 C>T site in ethnically two different PCOS case-control groups (total 261 cases and 256 controls) from India. The data analysis revealed a lack of association between this polymorphism and PCOS [OR = 1.11 (95%CI = 0.71–1.72), P = 0.66]. Group-wise analysis on the basis of ethnicity also revealed no association in any of the ethnic groups [Indo-Europeans, P = 1; Dravidians, P = 0.70]. Homocysteine levels did not differ significantly between cases (15.51 μmol/L, SD = 2.89) and controls (15.89 μmol/L, SD = 2.23). We also undertook a meta-analysis on 960 cases and 1028 controls, which suggested a significant association of the substitution with PCOS in the dominant model of analysis (OR = 1.47 (95%CI = 1.04–2.09), P = 0.032]. Trial sequential analysis corroborated findings of the traditional meta-analysis. However, we found that the conclusions of meta-analysis were strongly influenced by studies that deviated from the Hardy Weinberg equilibrium. A careful investigation of each study and a trial sequential analysis suggested that 677 C>T substitution holds no clinical significance in PCOS in most of the populations.

Conclusion

In conclusion, MTHFR 677 C>T polymorphism does not affect PCOS risk in India. The association seen in the meta-analysis is due to an outlier study and studies showing deviation from the Hardy Weinberg equilibrium.  相似文献   
28.
Light causes damage to the retina, which is one of the supposed factors for age-related macular degeneration in human. Some animal species show drastic retinal changes when exposed to intense light (e.g. albino rats). Although birds have a pigmented retina, few reports indicated its susceptibility to light damage. To know how light influences a cone-dominated retina (as is the case with human), we examined the effects of moderate light intensity on the retina of white Leghorn chicks (Gallus g. domesticus). The newly hatched chicks were initially acclimatized at 500 lux for 7 days in 12 h light: 12 h dark cycles (12L:12D). From posthatch day (PH) 8 until PH 30, they were exposed to 2000 lux at 12L:12D, 18L:6D (prolonged light) and 24L:0D (constant light) conditions. The retinas were processed for transmission electron microscopy and the level of expressions of rhodopsin, S- and L/M cone opsins, and synaptic proteins (Synaptophysin and PSD-95) were determined by immunohistochemistry and Western blotting. Rearing in 24L:0D condition caused disorganization of photoreceptor outer segments. Consequently, there were significantly decreased expressions of opsins and synaptic proteins, compared to those seen in 12L:12D and 18L:6D conditions. Also, there were ultrastructural changes in outer and inner plexiform layer (OPL, IPL) of the retinas exposed to 24L:0D condition. Our data indicate that the cone-dominated chick retina is affected in constant light condition, with changes (decreased) in opsin levels. Also, photoreceptor alterations lead to an overall decrease in synaptic protein expressions in OPL and IPL and death of degenerated axonal processes in IPL.  相似文献   
29.
Mathematical approaches made for both the charged dislocation model and piezoelectrically induced electron bombardment model of fracto‐mechanoluminescence (FML), the luminescence induced by fracture of solids, in ZnS:Mn phosphor indicate that the piezoelectrically induced electron bombardment model provides a dominating process for the FML of ZnS phosphors. The concentration of 3000 ppm Mn2+ is optimal for ML intensity of ZnS:Mn phosphor. The decay time of ML gives the relaxation time of the piston used to deform the sample and the time tm of maximum of ML is controlled by both the relaxation time of the piston and decay time of charges on the newly created surfaces of crystals. As the product of the velocity of dislocations and pinning time of dislocations gives the mean free path of a moving dislocation. Both factors play an important role in the ML excitation of impurity doped II–VI semiconductors. The linear increase of total ML intensity IT with the impact velocity indicates that the damage increases linearly with impact velocity of the load. Thus, the ML measurement can be used remotely to monitor the real‐time damage in the structures, and therefore, the ML of ZnS:Mn phosphor has also the potential for a structural health monitoring system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
30.
Bioprocess and Biosystems Engineering - Regardless of considerable progress in synthetic plastic or polymer-based industry, its low biodegradability is a critical issue. Nevertheless, natural...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号