首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   196篇
  免费   13篇
  2022年   6篇
  2021年   6篇
  2020年   2篇
  2019年   7篇
  2018年   8篇
  2017年   5篇
  2016年   5篇
  2015年   9篇
  2014年   16篇
  2013年   20篇
  2012年   16篇
  2011年   18篇
  2010年   5篇
  2009年   10篇
  2008年   5篇
  2007年   7篇
  2006年   10篇
  2005年   10篇
  2004年   16篇
  2003年   7篇
  2002年   8篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1985年   3篇
  1980年   1篇
排序方式: 共有209条查询结果,搜索用时 15 毫秒
111.
Quantitative Structure-Activity Relationship (QSAR) studies on a series of psychotomimetic phenylalkylamines have been made using a combination of Minimum Topological Difference (MTD) method and topological methodology. The topological indices used being a pool of distance-based topological indices. The regression analyses have shown that excellent results are obtained in multiparametric model containing MTD parameters, topological indices in that quantum chemical parameters has to be introduced. The predictive power of the proposed model is discussed on the basis of cross-validation parameters.  相似文献   
112.
Glycosylphosphatidylinositols (GPIs) are the most abundant molecules present in the membranes of the parasitic protozoa Leishmania responsible for multiple forms of leishmaniasis. Among the prominent biological activities displayed by the major Leishmania GPIs [lipophosphoglycan (LPG) and glycoinositolphospholipids (GIPLs)] is the inhibition of macrophage functions such as the protein kinase C (PKC)-dependent signaling pathway. The bioactivity of Leishmania GPIs is in contrast to Trypanosoma brucei and Plasmodium falciparum GPIs, which activate the macrophage functions. To address the question as to which structural domain of Leishmania GPIs is responsible for dramatic down-regulation of PKC-dependent transient c-fos expression, the chemically synthesized defined alkylacylglycerolipids domain of corresponding GPIs, and LPG and GIPLs isolated from Leishmania donovani, were evaluated for inhibition of PKC and c-fos expression in macrophages. The results presented here demonstrate that the unusual lipid domain of Leishmania GPIs is primarily responsible for inhibition of PKC-dependent transient c-fos expression.  相似文献   
113.
IFNs are a family of cytokines with pleiotropic biological effects mediated by scores of responsive genes. IFNs were the first human proteins to be effective in cancer therapy and were among the first recombinant DNA products to be used clinically. Both quality and quantity of life has been improved in response to IFNs in various malignancies. Despite its beneficial effects, unraveling the mechanisms of the anti-tumor effects of IFN has proven to be a complex task. IFNs may mediate anti-tumor effects either indirectly by modulating immunomodulatory and anti-angiogenic responses or by directly affecting proliferation or cellular differentiation of tumor cells. Both direct or indirect effects of IFNs result from induction of a subset of genes, called IFN stimulated genes (ISGs). In addition to the ISGs implicated in anti-viral, anti-angiogenic, immunomodulatory and cell cycle inhibitory effects, oligonucleotide microarray studies have identified ISGs with apoptotic functions. These include TNF- related apoptosis inducing ligand (TRAIL/Apo2L), Fas/FasL, XIAP associated factor-1 (XAF-1), caspase-4, caspase-8, dsRNA activated protein kinase (PKR), 2'5'A oligoadenylate synthetase (OAS), death activating protein kinases (DAP kinase), phospholipid scramblase, galectin 9, IFN regulatory factors (IRFs), promyelocytic leukemia gene (PML) and regulators of IFN induced death (RIDs). In vitro IFN-, IFN- and IFN- induced apoptosis in multiple cell lines of varied histologies. This review will emphasize possible mechanisms and the role of ISGs involved in mediating apoptotic function of IFNs.  相似文献   
114.
Molecular Biology Reports - The differentially expressed genes in the chickpea pod wall have been identified for the first time using a forward suppression subtractive hybridization (SSH) library....  相似文献   
115.
116.
Enterobacter sakazakii has recently been recognized as an often fatal neonatal pathogen that rarely infects adults. Although not much is known about factors involved in its pathogenicity, the organism has been reported to produce enterotoxin. Currently, no information is available in the literature about the production and characterization of the enterotoxin. This report is the first attempt regarding purification and biochemical characterization of the enterotoxin produced from E. sakazakii. The toxin was purified by ammonium sulfate precipitation, followed by DEAE cellulose ion exchange and desalting by Sephadex G-100. The 66 kDa toxin was most active at pH 6 and was stable at 90 degrees C for 30 min. This stability combined with the potent activity of the toxin (LD50 = 56 pg) emphasizes the potential risk to neonates fed infant milk formula contaminated with E. sakazakii. Further detailed molecular biological studies on the toxin are warranted in view of its stability and activity.  相似文献   
117.
The pseudodisaccharide mycothiol is present in millimolar levels as the dominant thiol in most species of Actinomycetales. The primary role of mycothiol is to maintain the intracellular redox homeostasis. As such, it acts as an electron acceptor/donor and serves as a cofactor in detoxification reactions for alkylating agents, free radicals and xenobiotics. In addition, like glutathione, mycothiol may be involved in catabolic processes with an essential role for growth on recalcitrant chemicals such as aromatic compounds. Following a little over a decade of research since the discovery of mycothiol in 1994, we summarize the current knowledge about the role of mycothiol as an enzyme cofactor and consider possible mycothiol-dependent enzymes.  相似文献   
118.
In the present investigation, the protein‐binding properties of naphthyl‐based hydroxamic acids (HAs), N‐1‐naphthyllaurohydroxamic acid ( 1 ) and N‐1‐naphthyl‐p‐methylbenzohydroxamic acid ( 2 ) were studied using bovine serum albumin (BSA) and UV–visible spectroscopy, fluorescence spectroscopy, diffuse reflectance spectroscopy–Fourier transform infrared (DRS–FTIR), circular dichroism (CD), and cyclic voltammetry along with computational approaches, i.e. molecular docking. Alteration in the antioxidant activities of compound 1 and compound 2 during interaction with BSA was also studied. From the fluorescence studies, thermodynamic parameters such as Gibb's free energy (ΔG), entropy change (ΔS) and enthalpy change (ΔH) were calculated at five different temperatures (viz., 298, 303, 308, 313 or 318 K) for the HAs–BSA interaction. The results suggested that the binding process was enthalpy driven with dominating hydrogen bonds and van der Waals’ interactions for both compounds. Warfarin (WF) and ibuprofen (IB) were used for competitive site‐specific marker binding interaction and revealed that compound 1 and compound 2 were located in subdomain IIA (Sudlow's site I) on the BSA molecule. Conclusions based on above‐applied techniques signify that various non‐covalent forces were involved during the HAs–BSA interaction. Therefore the resulted HAs–BSA interaction manifested its effect in transportation, distribution and metabolism for the drug in the blood circulation system, therefore establishing HAs as a drug‐like molecule.  相似文献   
119.
RNA thermometers control the translation of several heat shock and virulence genes by their temperature-sensitive structural transitions. Changes in the structure and dynamics of MiniROSE RNA, which regulates translation in the temperature range of 20–45°C, were studied by site specifically replacing seven adenine residues with the fluorescent analog, 2-aminopurine (2-AP), one at a time. Dynamic fluorescence observables of 2-AP-labeled RNAs were compared in their free versus ribosome-bound states for the first time. Noticeably, position dependence of fluorescence observables, which was prominent at 20°C, was persistent even at 45ºC, suggesting the persistence of structural integrity up to 45ºC. Interestingly, position-dependent dispersion of fluorescence lifetime and quenching constant at 45°C was ablated in ribosome-bound state, when compared to those at 20°C, underscoring loss of structural integrity at 45°C, in ribosome-bound RNA. Significant increase in the value of mean lifetime for 2-AP corresponding to Shine–Dalgarno sequences, when the temperature was raised from 20 to 45°C, to values seen in the presence of urea at 45°C was a strong indicator of melting of the 3D structure of MiniROSE RNA at 45°C, only when it was ribosome bound. Taken all together, we propose a model where we invoke that ribosome binding of the RNA thermometer critically regulates temperature sensing functions in MiniROSE RNA.  相似文献   
120.
BackgroundInfluenza surveillance is an important tool to identify emerging/reemerging strains, and defining seasonality. We describe the distinct patterns of circulating strains of the virus in different areas in India from 2009 to 2013.MethodsPatients in ten cities presenting with influenza like illness in out-patient departments of dispensaries/hospitals and hospitalized patients with severe acute respiratory infections were enrolled. Nasopharangeal swabs were tested for influenza viruses by real-time RT-PCR, and subtyping; antigenic and genetic analysis were carried out using standard assays.ResultsOf the 44,127 ILI/SARI cases, 6,193 (14.0%) were positive for influenza virus. Peaks of influenza were observed during July-September coinciding with monsoon in cities Delhi and Lucknow (north), Pune (west), Allaphuza (southwest), Nagpur (central), Kolkata (east) and Dibrugarh (northeast), whereas Chennai and Vellore (southeast) revealed peaks in October-November, coinciding with the monsoon months in these cities. In Srinagar (Northern most city at 34°N latitude) influenza circulation peaked in January-March in winter months. The patterns of circulating strains varied over the years: whereas A/H1N1pdm09 and type B co-circulated in 2009 and 2010, H3N2 was the predominant circulating strain in 2011, followed by circulation of A/H1N1pdm09 and influenza B in 2012 and return of A/H3N2 in 2013. Antigenic analysis revealed that most circulating viruses were close to vaccine selected viral strains.ConclusionsOur data shows that India, though physically located in northern hemisphere, has distinct seasonality that might be related to latitude and environmental factors. While cities with temperate seasonality will benefit from vaccination in September-October, cities with peaks in the monsoon season in July-September will benefit from vaccination in April-May. Continued surveillance is critical to understand regional differences in influenza seasonality at regional and sub-regional level, especially in countries with large latitude span.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号