全文获取类型
收费全文 | 1432篇 |
免费 | 68篇 |
国内免费 | 4篇 |
专业分类
1504篇 |
出版年
2022年 | 7篇 |
2021年 | 16篇 |
2020年 | 4篇 |
2019年 | 12篇 |
2018年 | 22篇 |
2017年 | 9篇 |
2016年 | 24篇 |
2015年 | 39篇 |
2014年 | 52篇 |
2013年 | 84篇 |
2012年 | 76篇 |
2011年 | 74篇 |
2010年 | 59篇 |
2009年 | 42篇 |
2008年 | 102篇 |
2007年 | 88篇 |
2006年 | 90篇 |
2005年 | 87篇 |
2004年 | 89篇 |
2003年 | 92篇 |
2002年 | 64篇 |
2001年 | 15篇 |
2000年 | 11篇 |
1999年 | 16篇 |
1998年 | 21篇 |
1997年 | 26篇 |
1996年 | 18篇 |
1995年 | 30篇 |
1994年 | 24篇 |
1993年 | 22篇 |
1992年 | 19篇 |
1991年 | 10篇 |
1990年 | 10篇 |
1989年 | 4篇 |
1988年 | 7篇 |
1987年 | 9篇 |
1986年 | 11篇 |
1985年 | 11篇 |
1984年 | 18篇 |
1983年 | 10篇 |
1982年 | 17篇 |
1981年 | 9篇 |
1980年 | 6篇 |
1978年 | 6篇 |
1976年 | 9篇 |
1975年 | 4篇 |
1974年 | 3篇 |
1973年 | 5篇 |
1971年 | 3篇 |
1970年 | 3篇 |
排序方式: 共有1504条查询结果,搜索用时 15 毫秒
71.
72.
Riyako Terazawa Dinesh R. Garud Nanako Hamada Yasunori Fujita Tomohiro Itoh Yoshinori Nozawa Keita Nakane Takashi Deguchi Mamoru Koketsu Masafumi Ito 《Bioorganic & medicinal chemistry》2010,18(19):7001-7008
The process of cancer development consists of three sequential stages termed initiation, promotion, and progression. Oxidative stress damages DNA and introduces mutations into oncogenes or tumor suppressor genes, thus contributing to cancer development. Cancer chemoprevention is defined to prevent or delay the development of cancer by the use of natural or synthetic substances. In the present study, we synthesized a series of organoselenium compounds and evaluated their possible chemopreventive properties in human prostate cancer LNCaP cells. Among 42 organoselenium compounds tested, two compounds, 3-selena-1-dethiacephem 13 and 3-selena-1-dethiacephem 14 strongly activated the Nrf2/ARE (antioxidant response element) signaling and thus markedly increased expression of heme oxygenase-1 (HO-1), a phase II antioxidant enzyme. Translocation of Nrf2 to the nucleus preceded HO-1 protein induction by two compounds. The intracellular ROS level was strongly reduced immediately after treatment with these compounds, showing that they are potent antioxidants. Finally, both compounds inhibited cell growth via cell cycle arrest. Our findings suggest that compounds 13 and 14 could not only attenuate oxidative stress through Nrf2/ARE activation and direct ROS scavenging but also inhibit cell growth. Thus, these compounds possess the potential as pharmacological agents for chemoprevention of human prostate cancer. 相似文献
73.
Ebi M Kataoka H Shimura T Kubota E Hirata Y Mizushima T Mizoshita T Tanaka M Mabuchi M Tsukamoto H Tanida S Kamiya T Higashiyama S Joh T 《Biochemical and biophysical research communications》2010,402(3):449-454
Background and aims: Transforming growth factor-beta (TGFβ) is known to potently inhibit cell growth. Loss of responsiveness to TGFβ inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGFβ and HB-EGF signal transduction via ADAM activation.Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGFβ. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGFβ was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGFβ was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown.Result: TGFβ-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGFβ induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGFβ enhanced gastric cancer cell growth and ADAM inhibitors suppressed this effect. EGFR phosphorylation, HB-EGF-CTF nuclear translocation, and cell growth were suppressed in ADAM17 knockdown cells.Conclusion: HB-EGF-CTF nuclear translocation and EGFR transactivation from proHB-EGF shedding mediated by ADAM17 activated by TGFβ might be an important pathway of gastric cancer cell proliferation by TGFβ. 相似文献
74.
75.
Tetsuya Fukui Akio Yoshimoto Mamoru Matsumoto Shunji Hosokawa Terumi Saito Hiroko Nishikawa Kenkichi Tomita 《Archives of microbiology》1976,110(2-3):149-156
The enzyme activity synthesizing poly--hydroxybutyrate (PHB) was mainly localized in the PHB-containing particulate fraction ofZoogloea ramigera I-16-M, when it grew flocculatedly in a medium supplemented with glucose. On the other hand, the enzyme activity remained in the soluble fraction, when the bacterium grew dispersedly in a glucose-starved medium.The soluble PHB synthase activity became associated with the particulate fraction as PHB synthesis was initiated on the addition of glucose to the dispersed culture. Conversely, the enzyme activity was released from the PHB-containing granules to the soluble fraction when the flocculated culture was kept incubated without supplementing the medium with glucose.PHB synthase was also incorporated into the newly formed PHB fraction when partially purified soluble PHB synthase was incubated withd(-)--hydroxybutyryl CoA in vitro.Although attempts to solubilize the particulate enzyme were unsuccessful, and the soluble enzyme became extremely unstable in advanced stages of purification, both PHB synthases had the same strict substrate specificity ford(-)--hydroxybutyryl CoA, and showed the same pH optimum at 7.0.Non-Standard Abbreviations PHB
poly--hydroxybutyrate 相似文献
76.
Yamazaki S Weinhold PS Graff RD Tsuzaki M Kawakami M Minchew JT Banes AJ 《Journal of cellular biochemistry》2003,90(4):812-818
Mechanical forces regulate the developmental path and phenotype of a variety of tissues and cultured cells. Vibratory loading as a mechanical stimulus occurs in connective tissues due to energy returned from ground reaction forces, as well as a mechanical input from use of motorized tools and vehicles. Structures in the spine may be particularly at risk when exposed to destructive vibratory stimuli. Cells from many tissues respond to mechanical stimuli, such as fluid flow, by increasing intracellular calcium concentration ([Ca(2+)](ic)) and releasing adenosine 5'-triphosphate (ATP), extracellularly, as a mediator to activate signaling pathways. Therefore, we examined whether ATP is released from rabbit (rAN) and human (hAN) intervertebral disc annulus cells in response to vibratory loading. ATP release from annulus cells by vibratory stimulation as well as in control cells was quantitated using a firefly luciferin-luciferase assay. Cultured hAN and rAN cells had a basal level of extracellular ATP ([ATP](ec)) in the range of 1-1.5 nM. Vibratory loading of hAN cells stimulated ATP release, reaching a net maximum [ATP] within 10 min of continuous vibration, and shortly thereafter, [ATP] declined and returned to below baseline level. [ATP] in the supernatant fluid of hAN cells was significantly reduced compared to the control level when the cells received vibration for longer than 15 min. In rAN cells, [ATP] was increased in response to vibratory loading, attaining a level significantly greater than that of the control after 30 min of continuous vibration. Results of the current study show that resting annulus cells secrete ATP and maintain a basal [ATP](ec). Annulus cells may use this nucleotide as a signaling messenger in an autocrine/paracrine fashion in response to vibratory loading. Rapid degradation of ATP to ADP may alternatively modulate cellular responses. It is hypothesized that exposure to repetitive, complex vibration regimens may activate signaling pathways that regulate matrix destruction in the disc. As in tendon cells, ATP may block subsequent responses to load and modulate the vibration response. Rabbit annulus cells were used as a readily obtainable source of cells in development of an animal model for testing effects of vibration on the disc. Human cells obtained from discarded surgical specimens were used to correlate responses of animal to human cells. 相似文献
77.
Endothelial nitric oxide synthase (eNOS) is a key enzyme in nitric oxide-mediated signal transduction in mammalian cells. Its catalytic activity is regulated both by regulatory proteins, such as calmodulin and caveolin, and by a variety of post-translational modifications including phosphorylation and acylation. We have previously shown that the calmodulin-binding domain peptide is a good substrate for protein kinase C [Matsubara, M., Titani, K., and Taniguchi, H. (1996) Biochemistry 35, 14651-14658]. Here we report that bovine eNOS protein is phosphorylated at Thr497 in the calmodulin-binding domain by PKC both in vitro and in vivo, and that the phosphorylation negatively regulates eNOS activity. A specific antibody that recognizes only the phosphorylated form of the enzyme was raised against a synthetic phosphopeptide corresponding to the phosphorylated domain. The antibody recognized eNOS immunoprecipitated with anti-eNOS antibody from the soluble fraction of bovine aortic endothelial cells, and the immunoreactivity increased markedly when the cells were treated with phorbol 12-myristate 13-acetate. PKC phosphorylated eNOS specifically at Thr497 with a concomitant decrease in the NOS activity. Furthermore, the phosphorylated eNOS showed reduced affinity to calmodulin. Therefore, PKC regulates eNOS activity by changing the binding of calmodulin, an eNOS activator, to the enzyme. 相似文献
78.
Takanori Nihira Erika Suzuki Motomitsu Kitaoka Mamoru Nishimoto Ken'ichi Ohtsubo Hiroyuki Nakai 《The Journal of biological chemistry》2013,288(38):27366-27374
A gene cluster involved in N-glycan metabolism was identified in the genome of Bacteroides thetaiotaomicron VPI-5482. This gene cluster encodes a major facilitator superfamily transporter, a starch utilization system-like transporter consisting of a TonB-dependent oligosaccharide transporter and an outer membrane lipoprotein, four glycoside hydrolases (α-mannosidase, β-N-acetylhexosaminidase, exo-α-sialidase, and endo-β-N-acetylglucosaminidase), and a phosphorylase (BT1033) with unknown function. It was demonstrated that BT1033 catalyzed the reversible phosphorolysis of β-1,4-d-mannosyl-N-acetyl-d-glucosamine in a typical sequential Bi Bi mechanism. These results indicate that BT1033 plays a crucial role as a key enzyme in the N-glycan catabolism where β-1,4-d-mannosyl-N-acetyl-d-glucosamine is liberated from N-glycans by sequential glycoside hydrolase-catalyzed reactions, transported into the cell, and intracellularly converted into α-d-mannose 1-phosphate and N-acetyl-d-glucosamine. In addition, intestinal anaerobic bacteria such as Bacteroides fragilis, Bacteroides helcogenes, Bacteroides salanitronis, Bacteroides vulgatus, Prevotella denticola, Prevotella dentalis, Prevotella melaninogenica, Parabacteroides distasonis, and Alistipes finegoldii were also suggested to possess the similar metabolic pathway for N-glycans. A notable feature of the new metabolic pathway for N-glycans is the more efficient use of ATP-stored energy, in comparison with the conventional pathway where β-mannosidase and ATP-dependent hexokinase participate, because it is possible to directly phosphorylate the d-mannose residue of β-1,4-d-mannosyl-N-acetyl-d-glucosamine to enter glycolysis. This is the first report of a metabolic pathway for N-glycans that includes a phosphorylase. We propose 4-O-β-d-mannopyranosyl-N-acetyl-d-glucosamine:phosphate α-d-mannosyltransferase as the systematic name and β-1,4-d-mannosyl-N-acetyl-d-glucosamine phosphorylase as the short name for BT1033. 相似文献
79.
Methionine aminopeptidase, known to be encoded by single genes in prokaryotes, is a cobalt-dependent enzyme that catalyzes the removal of N-terminal methionine residues from nascent polypeptides. Three ORFs encoding putative methionine aminopeptidases from the genome of cyanobacterium Synechocystis sp. strain PCC6803, designated as slr0786 (map-1), slr0918 (map-2) and sll0555 (map-3) were cloned and expressed in Escherichia coli. The purified recombinant proteins encoded by map-1 and map-3 had much higher methionine aminopeptidase activity than the recombinant protein encoded by map-2. Comparative analysis revealed that the three recombinant enzymes differed in their substrate specificity, divalent ion requirement, pH, and temperature optima. The broad activities of the iso-enzymes are discussed in light of the structural similarities with other peptidase families and their levels of specificity in the cell. Potential application of cyanobacterial MetAPs in the production of recombinant proteins used in medicine is proposed. This is the first report of a prokaryote harboring multiple methionine aminopeptidases.Abbreviations map Gene encoding methionine aminopeptidase - MetAP Methionine aminopeptidase - eMetAP-Ia Escherichia coli methionine aminopeptidase type Ia - yMetAP-Ib Yeast methionine aminopeptidase type Ib - yMetAP-IIa Yeast methionine aminopeptidase type IIa - hMetAP-IIb Human methionine aminopeptidase type IIb - pfMetAP–IIa Pyrococcus furiosis methionine aminopeptidase type Ia - bst MetAP-Ia Bacillus stearothermophilus methionine aminopeptidase type Ia - c1MetAP-Ia Cyanobacterial methionine aminopeptidase type Ia encoded by map-1 - c2MetAP-Ia Cyanobacterial methionine aminopeptidase type Ia encoded by map-2 - c3MetAP-Ib Cyanobacterial methionine aminopeptidase type Ib, ncoded by map-3 相似文献
80.
Hyodo T Ito S Hasegawa H Asano E Maeda M Urano T Takahashi M Hamaguchi M Senga T 《The Journal of biological chemistry》2012,287(30):25019-25029
Cytokinesis is initiated by constriction of the cleavage furrow and terminated by abscission of the intercellular bridge that connects two separating daughter cells. The complicated processes of cytokinesis are coordinated by phosphorylation and dephosphorylation mediated by protein kinases and phosphatases. Mammalian Misshapen-like kinase 1 (MINK1) is a member of the germinal center kinases and is known to regulate cytoskeletal organization and oncogene-induced cell senescence. To search for novel regulators of cytokinesis, we performed a screen using a library of siRNAs and found that MINK1 was essential for cytokinesis. Time-lapse analysis revealed that MINK1-depleted cells were able to initiate furrowing but that abscission was disrupted. STRN4 (Zinedin) is a regulatory subunit of protein phosphatase 2A (PP2A) and was recently shown to be a component of a novel protein complex called striatin-interacting phosphatase and kinase (STRIPAK). Mass spectrometry analysis showed that MINK1 was a component of STRIPAK and that MINK1 directly interacted with STRN4. Similar to MINK1 depletion, STRN4-knockdown induced multinucleated cells and inhibited the completion of abscission. In addition, STRN4 reduced MINK1 activity in the presence of catalytic and structural subunits of PP2A. Our study identifies a novel regulatory network of protein kinases and phosphatases that regulate the completion of abscission. 相似文献