首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   933篇
  免费   67篇
  国内免费   1篇
  2023年   3篇
  2022年   2篇
  2021年   20篇
  2020年   4篇
  2019年   10篇
  2018年   20篇
  2017年   16篇
  2016年   22篇
  2015年   33篇
  2014年   33篇
  2013年   31篇
  2012年   48篇
  2011年   60篇
  2010年   26篇
  2009年   42篇
  2008年   39篇
  2007年   61篇
  2006年   57篇
  2005年   49篇
  2004年   67篇
  2003年   52篇
  2002年   65篇
  2001年   32篇
  2000年   25篇
  1999年   25篇
  1998年   10篇
  1997年   14篇
  1996年   6篇
  1995年   3篇
  1994年   15篇
  1993年   3篇
  1992年   9篇
  1991年   13篇
  1990年   8篇
  1989年   6篇
  1988年   14篇
  1987年   14篇
  1986年   10篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1981年   2篇
  1980年   3篇
  1979年   5篇
  1977年   3篇
  1976年   3篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1966年   1篇
排序方式: 共有1001条查询结果,搜索用时 312 毫秒
41.
Functional analysis using RNAi was performed on eleven genes for metalloproteases of the M12A family in Caenorhabditis elegans and the interference of the C17G1.6 gene (nas-37) was found to cause incomplete molting. The RNAi of the C26C6.3 gene (nas-36) also caused a similar molting defect but not so severely as that of the nas-37 gene. Both the genes encode an astacin-like metalloprotease with an epidermal growth factor (EGF)-like domain, a CUB domain, and a thrombospondin-1 domain, in this order. The promoter-driven green fluorescent protein (GFP) expression analysis suggested that they are expressed in hypodermal cells throughout the larval stages and in the vulva of adult animals. In the genetic background of rde-1(ne219), where RNAi does not work, the molting defect caused by the nas-37 interference was observed when the transgenic wild-type rde-1 gene was expressed under the control of the dpy-7 promoter, known to be active in the hypodermal cells, but not under the control of the myo-3 promoter, active in the muscular cells. Therefore these proteases are thought to be secreted by the hypodermal cells and to participate in shedding of old cuticles.  相似文献   
42.
The synergistic effects of 6-alk(en)ylsalcylic acids, also known as anacardic acids, in combination with methicillin against Staphylococcus aureus ATCC 33591 (MRSA) was investigated. The double bond in C15-anacardic acids is not essential in eliciting the antibacterial activity but is associated with increasing the activity. The synergistic effects decreased with increasing the number of double bonds in the alkyl chain. On the other hand, the antibacterial activity of anacardic acids possessing different alkyl chain lengths against the same MRSA strain was found to be a parabolic function of their lipophilicity and maximized with the alkyl chain length of C10 and C12. Notably, the synergistic effects were noted to increase with increasing the alkyl chain length.  相似文献   
43.
In this study we report the cloning and characterization of a novel human aminopeptidase, which we designate leukocyte-derived arginine aminopeptidase (L-RAP). The sequence encodes a 960-amino acid protein with significant homology to placental leucine aminopeptidase and adipocyte-derived leucine aminopeptidase. The predicted L-RAP contains the HEXXH(X)18E zinc-binding motif, which is characteristic of the M1 family of zinc metallopeptidases. Phylogenetic analysis indicates that L-RAP forms a distinct subfamily with placental leucine aminopeptidase and adipocyte-derived leucine aminopeptidase in the M1 family. Immunocytochemical analysis indicates that L-RAP is located in the lumenal side of the endoplasmic reticulum. Among various synthetic substrates tested, L-RAP revealed a preference for arginine, establishing that the enzyme is a novel arginine aminopeptidase with restricted substrate specificity. In addition to natural hormones such as angiotensin III and kallidin, L-RAP cleaved various N-terminal extended precursors to major histocompatibility complex class I-presented antigenic peptides. Like other proteins involved in antigen presentation, L-RAP is induced by interferon-gamma. These results indicate that L-RAP is a novel aminopeptidase that can trim the N-terminal extended precursors to antigenic peptides in the endoplasmic reticulum.  相似文献   
44.
45.
Akt is known to be activated in the rheumatoid synovial tissues. We examined here functional role of Akt during tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-mediated apoptosis in rheumatoid synovial cells. Rheumatoid synovial cells in vitro were rapidly committed to apoptosis in response to TRAIL in mitochondria-dependent manner whereas Akt and extracellular signal-regulated kinase (ERK) were also phosphorylated. TRAIL-mediated apoptosis in synovial cells was significantly increased through inactivation of Akt by LY294002, however, that process was not so changed by adding ERK inhibitor, PD98059. Platelet-derived growth factor (PDGF) clearly phosphorylated both Akt and ERK in synovial cells, and PDGF pretreatment markedly suppressed TRAIL-mediated synovial cell apoptosis. The use of not PD98059 but LY294002 abrogated PDGF-mediated inhibitory effect toward TRAIL-induced apoptosis in synovial cells. The above protective effect of Akt was confirmed by the use of short interfering RNA (siRNA)-directed inhibition of Akt. Our data suggest that Akt is an endogenous inhibitor during TRAIL-mediated synovial cell apoptotic pathway, which may explain that synovial cells in situ of the rheumatoid synovial tissues are resistant toward apoptotic cell death in spite of death receptor expression.  相似文献   
46.
The cDNA encoding a second type of mouse beta-galactoside alpha2,6-sialyltransferase (ST6Gal II) was cloned and characterized. The sequence of mouse ST6Gal II encoded a protein of 524 amino acids and showed 77.1% amino acid sequence identity with human ST6Gal II. Recombinant ST6Gal II exhibited alpha2,6-sialyltransferase activity toward oligosaccharides that have the Galbeta1,4GlcNAc sequence at the nonreducing end of their carbohydrate groups, but it exhibited relatively low and no activity toward some glycoproteins and glycolipids, respectively. On the other hand, ST6Gal I, which has been known as the sole member of the ST6Gal-family for more than ten years, exhibited broad substrate specificity toward oligosaccharides, glycoproteins, and a glycolipid, paragloboside. The ST6Gal II gene was mainly expressed in brain and embryo, whereas the ST6Gal I gene was ubiquitously expressed, and its expression levels were higher than those of the ST6Gal II gene. The ST6Gal II gene is located on chromosome 17 and spans over 70 kb of mouse genomic DNA consisting of at least 6 exons. The ST6Gal II gene has a similar genomic structure to the ST6Gal I gene. In this paper, we have shown that ST6Gal II is a counterpart of ST6Gal I.  相似文献   
47.
48.
We examined the signaling pathway by which hepatocyte growth factor (HGF) induces cell motility, with special focus on the role of extracellular signal-regulated kinase (ERK) in the nucleus. We used Madin-Darby canine kidney cells overexpressing ERK2 because of their prominent motility response to HGF. HGF stimulation of the cells induces not only a rapid, marked, and sustained activation and rapid nuclear accumulation of ERK1/2, but also a prolonged nuclear retention of the activated ERK1/2. Interruption of the ERK1/2 activation by PD98059 treatment of the cells 30 min after HGF stimulation abolishes the HGF-induced cell motility. Enforced cytoplasmic retention of the activated ERK1/2 by the expression of an inactive form of MKP-3 cytoplasmic phosphatase inhibits the cell motility response. Although epidermal growth factor stimulation of the cells induces the activation and nuclear accumulation of ERK1/2, it does not induce the prolonged nuclear retention of the activated ERK1/2, and fails to induce cell motility. In the nucleus, activated ERK1/2 continuously phosphorylate Elk-1, leading to the prolonged expression of c-fos, which results in the expression of several genes such as matrix metalloproteinase (mmp)-9; MMP-9 activity is required for the induction of the cell motility response. Our results indicate that the sustained activity of ERK1/2 in the nucleus is required for the induction of HGF-induced cell motility.  相似文献   
49.
The role of mitochondrial permeability transition (PT) in apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol [NM(R)Sal], was studied by use of dopaminergic neuroblastoma SH-SY5Y cells. NM(R)Sal reduced mitochondrial membrane potential, DeltaPsim, in the early phase of apoptosis, which was not suppressed by a pan-caspase inhibitor, but was antagonized by Bcl-2 and cyclosporin A, suggesting the involvement of the PT in NM(R)Sal-induced loss of DeltaPsim. NM(R)Sal-induced apoptosis was completely inhibited not only by Bcl-2 and a pan-caspase inhibitor, but also by cyclosporin A, suggesting the essential role of the PT in NM(R)Sal-induced apoptosis. In mitochondria isolated from rat liver, NM(R)Sal induced swelling and reduced DeltaPsim, which was inhibited by cyclosporin A and Bcl-2 overexpression. These results indicate that NM(R)Sal induced the PT by direct action on the mitochondria. Rasagiline, N-propargyl-1(R)-aminoindan, which is a now under a clinical trial for Parkinson's disease, suppressed the DeltaPsim reduction, release of cytochrome c, and apoptosis induced by NM(R)Sal in SH-SY5Y cells. Rasagiline also inhibited the NM(R)Sal-induced loss of DeltaPsim and swelling in the isolated mitochondria, proving that rasagiline directly targets the mitochondria also. Altogether, mitochondrial PT plays a key role both in NM(R)Sal-induced cell death and the neuroprotective effect of rasagiline.  相似文献   
50.
To clarify the molecular basis underlying the neural function of the honeybee mushroom bodies (MBs), we identified three genes preferentially expressed in MB using cDNA microarrays containing 480 differential display-positive candidate cDNAs expressed locally or differentially, dependent on caste/aggressive behavior in the honeybee brain. One of the cDNAs encodes a putative type I inositol 1,4,5-trisphosphate (IP(3)) 5-phosphatase and was expressed preferentially in one of two types of intrinsic MB neurons, the large-type Kenyon cells, suggesting that IP(3)-mediated Ca(2+) signaling is enhanced in these neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号