首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   741篇
  免费   48篇
  789篇
  2023年   3篇
  2022年   4篇
  2021年   15篇
  2020年   4篇
  2019年   13篇
  2018年   23篇
  2017年   20篇
  2016年   21篇
  2015年   39篇
  2014年   34篇
  2013年   34篇
  2012年   47篇
  2011年   49篇
  2010年   25篇
  2009年   36篇
  2008年   42篇
  2007年   47篇
  2006年   46篇
  2005年   36篇
  2004年   52篇
  2003年   39篇
  2002年   38篇
  2001年   11篇
  2000年   22篇
  1999年   9篇
  1998年   6篇
  1997年   8篇
  1996年   6篇
  1995年   6篇
  1994年   8篇
  1993年   1篇
  1992年   3篇
  1991年   7篇
  1990年   8篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1971年   1篇
排序方式: 共有789条查询结果,搜索用时 15 毫秒
181.
Primary leiomyosarcoma (LMS) of bone is a rare and aggressive mesenchymal malignancy that differentiates toward smooth muscle. Complete resection is the only curable treatment, and novel therapeutic approaches for primary LMS of bone have long been desired. Patient-derived xenografts (PDXs) and cell lines are invaluable tools for preclinical studies. Here, we established PDXs from a patient with primary LMS of bone and a cell line from an established PDX. Bone primary LMS tissue was subcutaneously implanted into highly immune-deficient mice. After two passages, a piece of the tumor was subjected to tissue culturing, and a morphological evaluation and proteomic analysis were performed on the PDX and the established cell line. Moreover, the responses of the established cell line to anti-cancer drugs were examined. Microscopic observations revealed that the PDX tumors retained their original histology. The cell line was established from the third-generation PDX and named NCC-LMS1-X3-C1. The cells were maintained for over 18 mo and 40 passages. The cells exhibited a spindle shape and aggressive growth. Mass spectrometric protein identification revealed that the original tumor tissue, PDX tumor tissue, and NCC-LMS1-X3-C1 cells had similar but distinct protein expression profiles. We previously established the cell line, NCC-LMS1-C1, from the tumor tissue of same patient. We found that the response to drug treatments was different between NCC-LMS1-X3-C1 and NCC-LMS1-C1, suggesting the heterogeneous traits of tumor cells in the identical tumor tissue. This set of PDXs and stable cell line will be a useful resource for bone LMS research.  相似文献   
182.
183.
The coordinate expression of anthocyanin biosynthetic genes in leaves and stems of a red forma of Perilla frutescens is presumably controlled by regulatory gene(s). A Myc-like gene (Myc-rp) was isolated from a cDNA library prepared from the leaves of red P. frutescens, and its deduced amino acid sequence shows 64% identity with that of delila from snapdragon. The Myc-rp gene was expressed in leaves and roots of both red and green P. frutescens equally. Comparison of deduced amino acid sequence of Myc-rp with that of Myc-gp, the second allele isolated from a green forma of P. frutescens, indicates that the 132nd amino acid, alanine, existing in MYC-RP was changed to serine in MYC-GP. The heterologous expression of these two alleles of Myc-like gene in tobacco and tomato resulted in an increase of the anthocyanin contents in flowers of tobacco and vegetative tissues and flowers of tomato. However, the flowers of transgenic tobacco expressing the fragment with a partial deletion (encoding 1–115 amino acids deleted) of Myc-gp gave no change in anthocyanin accumulation, but some morphological changes of the flower were observed. In yeast, the MYC-RP/GP and Delila protein exhibited transactivation activity on the GAL-1 promoter from yeast and the promoter of dihydroflavonol 4-reductase (DFR) gene from P. frutescens. A transactivation domain of MYC-RP/GP and Delila could be located in the region between the 193rd and the 420th amino acid of MYC-RP/GP proteins. Our data indicate that this Myc-like gene presumably functions in the regulation of anthocyanin biosynthesis similarly in different tissues of dicot plants.  相似文献   
184.
In artificial environmental samples, the behavior of the IncP-7 conjugative plasmid pCAR1, which is involved in the catabolism of carbazole, was monitored. Sterile soil and water samples supplemented with carbazole were prepared. After inoculation with Pseudomonas putida harboring pCAR1, seven species of the genus Pseudomonas, and three other bacterial species, were monitored for carbazole degradation, bacterial survival, and conjugative transfer of pCAR1. In artificial soils, more than 90% of the carbazole was degraded in samples with high water content, suggesting that the water content is a key factor in carbazole degradation in artificial soils. In three of the artificial environmental water samples, more than 95% of the carbazole was degraded. Transconjugants were detected in some artificial water samples, but not in the artificial soil samples, suggesting that pCAR1 is preferably transferred in aqueous environments. Composition analysis of the artificial water samples and examination of conjugative transfer indicated that the presence of the divalent cations Ca(2+) and Mg(2+) promoted the plasmid transfer. The presence of carbazole also increases in incidence of transconjugants, probably by enhancing their growth. In contrast, humic acids in the liquid layer of artificial soil samples appeared to prevent conjugative transfer.  相似文献   
185.
Pyrosequencing system utilizing luciferase is one of the next-generation DNA sequencing systems. However, there is a crucial problem with the current pyrosequencing system: luciferase cannot discriminate between ATP and dATP completely, and dATPαS must be used as the dATP analogue. dATPαS is expensive and has low activity for the enzyme. If luciferase can clearly recognize the difference between ATP and dATP, dATP could be used instead of the expensive dATPαS in the pyrosequencing system. We attempted to prepare a novel luciferase with improved specific activity and dATP discrimination with the molecular display method. First, we selected two amino acid residues, Ser440 and Ser456, as target residues for mutation from the whole sequence of Photinus pyralis luciferase; we comprehensively mutated these two amino acids. A mutant luciferase library was constructed using yeast cell surface engineering. Through three step-wide screenings with individual conditions, we easily and speedily isolated three candidate mutants from 1,152 candidates and analyzed the properties of these mutants. Consequently, we succeeded in obtaining interesting mutant luciferases with improved specific activity and dATP discrimination more conveniently than with other methods.  相似文献   
186.
Macroautophagy is a catabolic process by which cytosolic components are sequestered by double membrane vesicles called autophagosomes and sorted to the lysosomes/vacuoles to be degraded. Saccharomyces cerevisiae has adapted this mechanism for constitutive transport of the specific vacuolar hydrolases aminopeptidase I (Ape1) and α-mannosidase (Ams1); this process is called the cytoplasm to vacuole targeting (Cvt) pathway. The precursor form of Ape1 self-assembles into an aggregate-like structure in the cytosol that is then recognized by Atg19 in a propeptide-dependent manner. The interaction between Atg19 and autophagosome-forming machineries allows selective packaging of the Ape1-Atg19 complex by the autophagosome-like Cvt vesicle. Ams1 also forms oligomers and utilizes the Ape1 transport system by interacting with Atg19. Although the mechanism of selective transport of the Cvt cargoes has been well studied, it is unclear whether proteins other than Ape1 and Ams1 are transported via the Cvt pathway. We describe here that aspartyl aminopeptidase (Yhr113w/Ape4) is the third Cvt cargo, which is similar in primary structure and subunit organization to Ape1. Ape4 has no propeptide, and it does not self-assemble into aggregates. However, it binds to Atg19 in a site distinct from the Ape1- and Ams1-binding sites, allowing it to "piggyback" on the Ape1 transport system. In growing conditions, a small portion of Ape4 localizes in the vacuole, but its vacuolar transport is accelerated by nutrient starvation, and it stably resides in the vacuole lumen. We propose that the cytosolic Ape4 is redistributed to the vacuole when yeast cells need more active vacuolar degradation.  相似文献   
187.
Ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) is a neuron-specific ubiquitin recycling enzyme. A mutation at residue 93 and polymorphism at residue 18 within human UCH-L1 are linked to familial Parkinson's disease and a decreased Parkinson's disease risk, respectively. Thus, we constructed recombinant human UCH-L1 variants and examined their structure (using circular dichroism) and hydrolase activities. We confirmed that an I93M substitution results in a decrease in kcat (45.6%) coincident with an alteration in alpha-helical content. These changes may contribute to the pathogenesis of Parkinson's disease. In contrast, an S18Y substitution results in an increase in kcat (112.6%) without altering the circular dichroistic spectrum. These data suggest that UCH-L1 hydrolase activity may be inversely correlated with Parkinson's disease risk and that the hydrolase activity is protective against the disease. Furthermore, we found that oxidation of UCH-L1 by 4-hydroxynonenal, a candidate for endogenous mediator of oxidative stress-induced neuronal cell death, results in a loss of hydrolase activity. Taken together, these results suggest that further studies of altered UCH-L1 hydrolase function may provide new insights into a possible common pathogenic mechanism between familial and sporadic Parkinson's disease.  相似文献   
188.
Escherichia coli mutants with improved organic solvent tolerance levels showed high levels of outer membrane protein TolC and inner membrane protein AcrA. The TolC level was regulated positively by MarA, Rob, or SoxS. A possible mar-rob-sox box sequence was found upstream of the tolC gene. These findings suggest that tolC is a member of the mar-sox regulon responsive to stress conditions. When a defective tolC gene was transferred to n-hexane- or cyclohexane-tolerant strains by P1 transduction, the organic solvent tolerance level was lowered dramatically to the decane-tolerant and nonane-sensitive level. The tolerance level was restored by transformation of the transductants with a wild-type tolC gene. Therefore, it is evident that TolC is essential for E. coli to maintain organic solvent tolerance.  相似文献   
189.
190.
A common feature of caliciviruses is the proteolytic processing of the viral polyprotein catalyzed by the viral 3C-like protease encoded in open reading frame 1 (ORF1). Here we report the identification and structural characterization of the protease domains and amino acid residues in sapovirus (SaV) and feline calicivirus (FCV). The in vitro expression and processing of a panel of truncated ORF1 polyproteins and corresponding mutant forms showed that the functional protease domain is 146 amino acids (aa) in SaV and 154 aa in FCV. Site-directed mutagenesis of the protease domains identified four amino acid residues essential to protease activities: H(31), E(52), C(116), and H(131) in SaV and H(39), E(60), C(122), and H(137) in FCV. A computer-assisted structural analysis showed that despite high levels of diversity in the primary structures of the protease domains in the family Caliciviridae, the configurations of the H, E, C, and H residues are highly conserved, with these residues positioned closely along the inner surface of the potential binding cleft for the substrate. These results strongly suggest that the H, E, C, and H residues are involved in the formation of a conserved catalytic surface of the SaV and FCV 3C-like proteases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号