首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2011年   5篇
  2010年   6篇
  2009年   2篇
  2008年   1篇
  2007年   6篇
  2006年   10篇
  2005年   1篇
  2003年   3篇
  2002年   2篇
  2000年   2篇
  1998年   1篇
  1994年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
31.
The lung is composed of a series of branching conducting airways that terminate in grape-like clusters of delicate gas-exchanging airspaces called pulmonary alveoli. Maintenance of alveolar patency at end expiration requires pulmonary surfactant, a mixture of phospholipids and proteins that coats the epithelial surface and reduces surface tension. The surfactant lining is exposed to the highest ambient oxygen tension of any internal interface and encounters a variety of oxidizing toxicants including ozone and trace metals contained within the 10 kl of air that is respired daily. The pathophysiological consequences of surfactant oxidation in humans and experimental animals include airspace collapse, reduced lung compliance, and impaired gas exchange. We now report that the hydrophilic surfactant proteins A (SP-A) and D (SP-D) directly protect surfactant phospholipids and macrophages from oxidative damage. Both proteins block accumulation of thiobarbituric acid-reactive substances and conjugated dienes during copper-induced oxidation of surfactant lipids or low density lipoprotein particles by a mechanism that does not involve metal chelation or oxidative modification of the proteins. Low density lipoprotein oxidation is instantaneously arrested upon SP-A or SP-D addition, suggesting direct interference with free radical formation or propagation. The antioxidant activity of SP-A maps to the carboxyl-terminal domain of the protein, which, like SP-D, contains a C-type lectin carbohydrate recognition domain. These results indicate that SP-A and SP-D, which are ubiquitous among air breathing organisms, could contribute to the protection of the lung from oxidative stresses due to atmospheric or supplemental oxygen, air pollutants, and lung inflammation.  相似文献   
32.
33.
Since last few decades hepatitis C virus (HCV) has been a major cause of death due to the involvement of acute and chronic type of liver diseases throughout the world. Genotype variability and mutations occurring at different regions of HCV genome provides a critical parameter for the study of sustained virological response (SVR) against mono and combinational therapies. Most of these mutations occurring in E2 and NS5A-ISDR regions in HCV genotypes play a significant role in SVR against Interferon-monotherapy and combination therapy. Therefore, the aim of the present study is to evaluate the SVR in various genotypes and the role of mutations in specific regions. In line with this, the NS5A and E2 proteins of HCV genotype 1 were found to suppress the double-stranded (ds) RNA-dependent protein kinase (PKR), which in turn is entailed in the cellular antiviral response stimulated by interferon (IFN). The response to IFN therapy varies between genotypes, with response rates among patients infected with types 2 and 3 nearly two-three-fold greater than in patients infected with type 1. Surprisingly, a considerable percentage of HCV genotype 3a infected patients do not react to treatment at all. In Japan, a link was observed between the numbers of mutations in an “interferon sensitivity determining region” (ISDR) and the result of interferon treatment in genotype 1b infected patients. Therefore, we published data on E2 (PePHD) and NS5A-ISDR regions including our data on SVR of different HCV genotypes, the relationship between the number and patterns of mutations in the E2 (PePHD) and NS5A-ISDR regions and responsiveness to IFN therapy.  相似文献   
34.
Two genes (MAT1A and MAT2A) encode for methionine adenosyltransferase (MAT), an essential cellular enzyme responsible for S-adenosylmethionine biosynthesis. MAT1A is expressed mostly in the liver, whereas MAT2A is widely distributed. We showed a switch from MAT1A to MAT2A expression in human hepatocellular carcinoma (HCC), which facilitates cancer cell growth. Using DNase I footprinting analysis, we previously identified a region in the MAT2A promoter protected from DNase I digestion in HCC. This region contains NF-kappa B and AP-1 elements, and the present study examined whether they regulate MAT2A promoter activity. We found nuclear binding of NF-kappa B and AP-1 to the MAT2A promoter increased in HCC. Tumor necrosis factor alpha (TNFalpha), which activates both NF-kappa B and AP-1, increased MAT2A expression in a dose- and time-dependent manner, binding of both NF-kappa B and AP-1 to the MAT2A promoter and MAT2A promoter activity, with the latter effect blocked by site-directed mutagenesis of the NF-kappa B and AP-1 binding sites. Blocking NF-kappa B with I kappa B super-repressor or AP-1 with dominant-negative c-Jun led to decreased basal MAT2A expression and prevented the TNF alpha-induced increase in MAT2A expression. Although blocking NF-kappa B had no influence on the ability of TNF alpha to increase AP-1 nuclear binding, blocking AP-1 with dominant-negative c-Jun prevented the TNF alpha-mediated increase in NF-kappa B binding. In conclusion, both NF-kappa B and AP-1 are required for basal MAT2A expression in HepG2 cells and mediate the increase in MAT2A expression in response to TNF alpha treatment. Increased trans-activation of these two sites also contributes to MAT2A up-regulation in HCC.  相似文献   
35.
36.
37.
The activation of innate and adaptive immunity is always balanced by inhibitory signalling mechanisms to maintain tissue integrity. We have identified the E3 ligase c-Cbl--known for its roles in regulating lymphocyte signalling--as a modulator of dendritic cell activation. In c-Cbl-deficient dendritic cells, Toll-like receptor-induced expression of proinflammatory factors, such as interleukin-12, is increased, correlating with a greater potency of dendritic-cell-based vaccines against established tumours. This proinflammatory phenotype is accompanied by an increase in nuclear factor (NF)-κB activity. In addition, c-Cbl deficiency reduces both p50 and p105 levels, which have been shown to modulate the stimulatory function of NF-κB. Our data indicate that c-Cbl has a crucial, RING-domain-dependent role in regulating dendritic cell maturation, probably by facilitating the regulatory function of p105 and/or p50.  相似文献   
38.
39.
Tyrosine phosphorylation in plants could be performed only by dual-specificity kinases. Arabidopsis thaliana dual-specificity protein kinase (AtSTYPK) exhibited strong preference for manganese over magnesium for its kinase activity. The kinase autophosphorylated on serine, threonine and tyrosine residues and phosphorylated myelin basic protein on threonine and tyrosine residues. The AtSTYPK harbors manganese dependent serine/threonine kinase domain, COG3642. His248 and Ser265 on COG3642 are conserved in AtSTYPK and the site-directed mutant, H248A showed loss of serine/threonine kinase activity. The protein kinase activity was abolished when Thr208 in the TEY motif and Thr293 of the activation loop were converted to alanine. The conversion of Thr284 in the activation loop to alanine resulted in an increased phosphorylation. This study reports the first identification of a manganese dependent dual-specificity kinase and the importance of Thr208, Thr284, and Thr293 residues in the regulation of kinase activity.  相似文献   
40.
Bioreactors are widely used in tissue engineering as a way to distribute nutrients within porous materials and provide physical stimulus required by many tissues. However, the fluid dynamics within the large porous structure are not well understood. In this study, we explored the effect of reactor geometry by using rectangular and circular reactors with three different inlet and outlet patterns. Geometries were simulated with and without the porous structure using the computational fluid dynamics software Comsol Multiphysics 3.4 and/or ANSYS CFX 11 respectively. Residence time distribution analysis using a step change of a tracer within the reactor revealed non-ideal fluid distribution characteristics within the reactors. The Brinkman equation was used to model the permeability characteristics with in the chitosan porous structure. Pore size was varied from 10 to 200 microm and the number of pores per unit area was varied from 15 to 1,500 pores/mm(2). Effect of cellular growth and tissue remodeling on flow distribution was also assessed by changing the pore size (85-10 microm) while keeping the number of pores per unit area constant. These results showed significant increase in pressure with reduction in pore size, which could limit the fluid flow and nutrient transport. However, measured pressure drop was marginally higher than the simulation results. Maximum shear stress was similar in both reactors and ranged approximately 0.2-0.3 dynes/cm(2). The simulations were validated experimentally using both a rectangular and circular bioreactor, constructed in-house. Porous structures for the experiments were formed using 0.5% chitosan solution freeze-dried at -80 degrees C, and the pressure drop across the reactor was monitored.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号