首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   7篇
  62篇
  2022年   1篇
  2021年   2篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   8篇
  2014年   4篇
  2013年   1篇
  2012年   1篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2000年   2篇
  1999年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有62条查询结果,搜索用时 0 毫秒
21.
Binding of autoantibodies to the acetylcholine receptor (AChR) plays a major role in the autoimmune disease Myasthenia gravis (MG). In this paper, we propose a structure model of a putative immunocomplex that gives rise to the reduction of functional AChR molecules during the course of MG. The model complex consists of the [G(70), Nle(76)] decapeptide analogue of the main immunogenic region (MIR), representing the major antigenic epitope of AChR, and the single chain Fv fragment of monoclonal antibody 198, a potent MG autoantibody. The structure of the complexed decapeptide antigen [G(70), Nle(76)]MIR was determined using two-dimensional nmr, whereas the antibody structure was derived by means of homology modeling. The final complex was constructed using calculational docking and molecular dynamics. We termed this approach "directed modeling," since the known peptide structure directs the prestructured antibody binding site to its final conformation. The independently derived structures of the peptide antigen and antibody binding site already showed a high degree of surface complementarity after the initial docking calculation, during which the peptide was conformationally restrained. The docking routine was a soft algorithm, applying a combination of Monte Carlo simulation and energy minimization. The observed shape complementarity in the docking process suggested that the structure assessments already led to anti-idiotypic conformations of peptide antigen and antibody fragment. Refinement of the complex by dynamic simulation yielded improved surface adaptation by small rearrangements within antibody and antigen. The complex presented herein was analyzed in terms of antibody-antigen interactions, properties of contacting surfaces, and segmental mobility. The structural requirements for AChR complexation by autoantibodies were explored and compared with experimental data from alanine scans of the MIR peptides. The analysis revealed that the N-terminal loop of the peptide structure, which is indispensable for antibody recognition, aligns three hydrophobic groups in a favorable arrangement leading to the burial of 40% of the peptide surface in the binding cleft upon complexation. These data should be valuable in the rational design of an Fv mutant with much improved affinity for the MIR and AChR to be used in therapeutic approaches in MG.  相似文献   
22.
Ancient genomics     
The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field''s focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past.  相似文献   
23.
Insulin-like growth factor (IGF)-I and IGF-II play major roles in the regulation of skeletal muscle growth and differentiation, and both are locally expressed in muscle cells. Recent studies have demonstrated that IGF-II up-regulates its own gene expression during myogenesis and this auto-regulatory loop is critical for muscle differentiation. How local IGF-I is regulated in this process is unclear. Here, we report that while IGF-II up-regulated its own gene expression, it suppressed IGF-I gene expression during myogenesis. These opposite effects of IGF-II on IGF-I and IGF-II genes expression were time dependent and dose dependent. It has been shown that IGFs activate the PI3K-Akt-mTOR, p38 MAPK, and Erk1/2 MAPK pathways. In myoblasts, we examined their role(s) in mediating the opposite effects of IGF-II. Our results showed that both the PI3K-Akt-mTOR and p38 MAPK pathways played critical roles in increasing IGF-II mRNA expression. In contrast, mTOR was required for down-regulating the IGF-I gene expression by IGF-II. In addition, Akt, Erk1/2 MAPK, and p38 MAPK pathways were also involved in the regulation of basal levels of IGF-I and IGF-II genes during myogenesis. These findings reveal a previously unrecognized negative feedback mechanism and extend our knowledge of IGF-I and IGF-II gene expression and regulation during myogenesis.  相似文献   
24.
TNF and its receptors p55 and p75 are known to be important in the homeostasis of the peripheral immune system. Previous studies have presented apparently contradictory evidence for an in vivo role of TNF in T cells. In this study, we analyzed TNF-deficient mice crossed with the F5 TCR-transgenic animals. We show that endogenous TNF modulates several aspects of homeostasis of peripheral F5 CD8 T cells. We found that F5/TNF(-/-)mice had reduced numbers of peripheral F5 T cells, F5/TNF(-/-) CD8 T cells exhibited reduced survival potential, and furthermore that T cell-derived TNF is required for optimum recovery of naive CD8 T cells in lymphopenic hosts, suggesting its involvement in the survival of peripheral CD8 T cells. Both peptide activation and ensuing Ag-induced apoptosis are quantitatively reduced in TNF(-/-) CD8 T cells. The latter observations can be related to decreased binding activities of NF-kappaB and NF-ATp observed in Ag-stimulated F5/TNF(-/-) T cells. Finally, in a CD8 T cell tolerance model, endogenous TNF was necessary for several parameters of CD8 T cell tolerance induction. Collectively, our results provide evidence that endogenous TNF modulates thresholds in several ligand-driven T cell responses.  相似文献   
25.
We tested the suitability of the fly transposon Minos, a member of the Tc1/mariner superfamily, for insertional mutagenesis in the mouse germ line. We generated a transgenic mouse line expressing Minos transposase in growing oocytes and another carrying a tandem array of nonautonomous transposons. The frequency of transposition in the progeny derived from oocytes carrying both transgenes is 8.2%. Analysis of the new integration sites shows a high frequency of transpositions to a different chromosome. Thus Minos transposition could be an effective system for insertional mutagenesis and functional genomic analysis in the mouse.  相似文献   
26.
Hepcidin is a circulating cysteine-rich peptide with antimicrobial properties. It functions as a hormonal regulator of iron homeostasis by controlling iron efflux from target cells via ferroportin (FPN1), which is internalized and degraded upon hepcidin binding. Because of its profound biomedical significance, hepcidin has become the target of intense biochemical studies. The aim of this study was to produce functional recombinant hepcidin in sufficient quantities for advanced research or potential clinical use, as the native hepcidin can be isolated from urine in very low yield. We report the expression, purification and functional characterization of hepcidin variants in yeast P. pastoris. The yield of untagged hepcidin 20- and 25-mer peptides was too low for complete functional characterization. By contrast, Hep20 and Hep25 tagged with either single 6xHis or double Myc-6xHis epitopes were expressed at high quantities (5-7mg/l of culture), yet mostly in oligomeric forms. Purification of monomeric tagged hepcidins was achieved by size exclusion chromatography, with a yield of 0.5-1mg/l of culture. All recombinant hepcidins exhibited bacteriostatic activity and the ability to control cellular iron homeostasis, with Hep25-His being the most potent. Thus, Hep25-His promoted an increase in the levels of the labile iron pool (LIP) in macrophages and consistently bound to ferroportin (FPN1) causing its internalization and the subsequent downregulation of transferrin receptor 1 (TfR1) expression. Analysis by mass-spectrometry suggested that all eight cysteines participated in disulfide bond formation. Our results suggest that only the recombinant Hep25-His monomer was a fully active peptide. As Hep25-His faithfully recapitulates the functional properties of native Hep25, it represents a powerful tool for biochemical studies and potential diagnostic and therapeutic applications.  相似文献   
27.
IntroductionTo determine the prevalence and clinical/laboratory associations of subclinical atherosclerosis and impaired bone health in primary Sjogren’s syndrome (SS).Methods64 consecutive patients with primary SS, 77 with rheumatoid arthritis (RA) and 60 healthy controls (HC) οf similar age and sex distribution were enrolled. Demographics, clinical/laboratory features, classical risk factors for atherosclerosis and osteoporosis (OP) were recorded. Intima-medial thickness scores (IMT) and carotid/femoral (C/F) plaque formation, as well as bone mineral density (BMD) and fractures were evaluated. Determinants of IMT/BMD levels and the presence of plaque were assessed by univariate and multivariate models. Serum levels of the Wnt signaling mediators Dickkopf-related protein 1(DKK1) and sclerostin were determined in primary SS patients and HC.ResultsIncreased arterial wall thickening (IMT > 0.90 mm) and impaired bone health (defined as OP or osteopenia), were detected in approximately two-thirds of primary SS and RA patients, with a mean IMT value being significantly increased compared to HC. The presence of primary SS emerged as an independent risk factor for arterial wall thickening when traditional risk factors for cardiovascular disease (CVD) including age, sex, hypertension, smoking (pack/years), LDL and HDL levels were taken into account in a multivariate model [adjusted OR 95% (CI): 2.8 (1.04-7.54)]. In primary SS, age was revealed as independent predictor of increased IMT scores; age and lymphopenia as well as increased urine pH as independent determinants of C/F plaque formation and OP/osteopenia, respectively. An independent association of OP/osteopenia with plaque formation was observed when independent predictors for both variables were considered, with low DKK1 levels being associated with both plaque formation and lower BMD levels.ConclusionsComorbidities such as subclinical atherosclerosis and impaired bone health occur frequently in primary SS, in association with disease related features and traditional risk factors. Wnt signaling mediators are potentially involved in the pathogenesis of both entities.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0613-6) contains supplementary material, which is available to authorized users.  相似文献   
28.
Genomic sequences located at the 3' flanking region of the human CD2 gene confer high level tissue-specific, position-independent expression of the gene when introduced in the germ line of mice. In order to further characterize these sequences a range of deletions, from the 3' end were produced and transgenic mice were generated with the human CD2 (hCD2) gene linked to these deleted fragments. This allowed us to establish the minimum sequences necessary for the copy-dependent transgene expression. 2.1 kb or 1.5 kb of 3' flanking sequences linked to a hCD2 mini-gene is sufficient to allow T-cell specific, copy-dependent, integration-independent expression in transgenic mice. 1.1 kb of 3' sequences results in the gene being expressed in a T-cell specific manner, but copy-dependent, integration-independent expression was not observed in a small number of transgenic animals. 0.2 or 0.5 kb of 3' flanking sequences were insufficient to allow expression above the level previously found with a human CD2 gene which lacked 3' flanking sequences. We conclude that the Locus Control Region (LCR) effect is caused by 1.5 kb of flanking sequences immediately 3' to the polyadenylation signal of the gene.  相似文献   
29.
The hydrodynamic behaviour of both the soluble and purified gamma-aminobutyric acidA (GABAA) receptor of bovine or rat cerebral cortex has been investigated in solution in Triton X-100 or in 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulphonate (CHAPS). In all the hydrodynamic separations made, it was found that the binding activities for GABA, benzodiazepine, and (where detectable) t-butylbicyclophosphorothionate comigrated. Conditions were established for gel exclusion chromatography and for sucrose density gradient velocity sedimentation that maintain the GABAA receptor in a nonaggregated form. Using these conditions, the molecular weight of the bovine GABAA receptor in the above-mentioned detergents was calculated using the H2O/2H2O method. A value of Mr 230,000-240,000 was calculated for the bovine pure GABAA receptor purified in sodium deoxycholate/Triton X-100 media. A value of Mr 284,000-290,000 was calculated for the nonaggregated bovine or rat cortex receptor in CHAPS, but the Stokes radius is smaller in the latter than in the former medium and the detergent binding in CHAPS is underestimated. Thus the deduced Mr, 240,000, is the best estimate by this method.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号