首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   7篇
  87篇
  2021年   1篇
  2020年   2篇
  2017年   2篇
  2015年   2篇
  2014年   3篇
  2013年   7篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
  2002年   3篇
  2001年   6篇
  2000年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1989年   8篇
  1986年   1篇
  1984年   2篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
  1970年   1篇
  1956年   1篇
  1938年   1篇
  1937年   1篇
排序方式: 共有87条查询结果,搜索用时 0 毫秒
21.
Evidence is presented for the existence of a noncellulosic β-1,3-glucan in cotton fibers. The glucan can be isolated as distinct fractions of varying solubility. When fibers are homogenized rigorously in aqueous buffer, part of the total β-1,3-glucan is found as a soluble polymer in homogenates freed of cell walls. The proportion of total β-1,3-glucan which is found as the soluble polymer varies somewhat as a function of fiber age. The insoluble fraction of the β-1,3-glucan remains associated with the cell wall fraction. Of this cell wall β-1,3-glucan, a variable portion can be solubilized by treatment of walls with hot water, a further portion can be solubilized by alkaline extraction of the walls, and 17 to 29% of the glucan remains associated with cellulose even after alkaline extraction. A portion of this glucan can also be removed from the cell walls of intact cotton fibers by digestion with an endo-β-1,3-glucanase. The glucan fraction which can be isolated as a soluble polymer in homogenates freed of cell walls is not associated with membranous material, and we propose that it represents glucan which is also extracellular but not tightly associated with the cell wall. Enzyme digestion studies indicate that all of the cotton fiber glucan is β-linked, and methylation analyses and enzyme studies both show that the predominant linkage in the glucan is 1 → 3. The possibility of some minor branching at C-6 can also be deduced from the methylation analyses. The timing of deposition of the β-1,3-glucan during fiber development coincides closely with the onset of secondary wall cellulose synthesis. Kinetic studies performed with ovules and fibers cultured in vitro show that incorporation of radioactivity from [14C]glucose into β-1,3-glucan is linear with respect to time almost from the start of the labeling period; however, a lag is observed before incorporation into cellulose becomes linear with time, suggesting that these two different glucans are not polymerized directly from the same substrate pool. Pulse-chase experiments indicate that neither the β-1,3-glucan nor cellulose exhibits significant turnover after synthesis.  相似文献   
22.
The stereospecificity of monoacylglycerol acyltransferase from rat intestinal mucosa and suckling rat liver microsomes was examined using sn-1,2-diacylglycerol kinase from Escherichia coli. With 2-monooleoyl glycerol and palmitoyl-CoA, 88 and 87.9% of the diacylglycerol synthesized by the intestinal mucosa and suckling liver, respectively, was demonstrated to be the sn-1,2-isomer. Analysis of similar preparations of these diacylglycerol products by gas-liquid chromatography-mass spectrometry indicated that most of the remaining diacylglycerol was the 1,3-isomer that probably arose via acyl-migration. These results indicate that monoacylglycerol acyltransferase is stereospecific. Measurement of acyltransferase activities in microsomes using 1- and 2-monoacyl- and monoalkylglycerols as substrates indicated that the monoacylglycerol acyltransferases from suckling liver and intestinal mucosa have different substrate specificities.  相似文献   
23.
24.
A simple procedure for preparing alkyl and benzyl esters of peptides is described. The procedure can provide an increase in the secondary ion yield of a factor of 25 or more in the liquid secondary ion mass spectra of hydrophilic peptides. The procedure allows rapid in situ derivatization of, e.g., collected, lyophilized HPLC fractions. No sample transfers are required and excess reagents are easily removed. Mass spectrometry of such fractions is typically required to prepare a mass map of the peptides produced by proteolytic digestion of a protein. However, small hydrophilic peptides are often not detected because their low secondary ion yield. Relative yields of MH+ ions from peptides esterified with various alcohols are compared: methanol, 2-propanol, 1-butanol, 1-hexanol, 1-octanol, and benzyl alcohol. The best combination of ion yield and ease of reagent removal is obtained with 1-hexanol. The degree of improvement depends on the specific peptide; the greatest improvement is generally observed with the most hydrophilic peptides. The procedure does not affect side-chain amides. Partial derivatization is sometimes observed with peptides containing more than one carboxyl group. Hexylation is shown to have a leveling effect on the mass spectra of peptide mixtures, allowing detection of surface-inactive peptides in the presence of surface-active ones. Benzyl alcohol is useful for derivatizing peptides that are not retained or that elute very early from reverse-phase HPLC columns. The derivatives have longer retention times and greater uv molar absorptivity and are more easily detected by subsequent mass spectrometry than the underivatized peptides.  相似文献   
25.
The ubiquitous protein CD46, a regulator of complement activity, promotes T cell activation and differentiation toward a regulatory Tr1-like phenotype. The CD46-mediated differentiation pathway is defective in several chronic inflammatory diseases, underlying the importance of CD46 in controlling T cell function and the need to understand its regulatory mechanisms. Using an RNA interference-based screening approach in primary T cells, we have identified that two members of the G protein-coupled receptor kinases were involved in regulating CD46 expression at the surface of activated cells. We have investigated the role of PGE(2), which binds to the E-prostanoid family of G protein-coupled receptors through four subtypes of receptors called EP 1-4, in the regulation of CD46 expression and function. Conflicting roles of PGE(2) in T cell functions have been reported, and the reasons for these apparent discrepancies are not well understood. We show that addition of PGE(2) strongly downregulates CD46 expression in activated T cells. Moreover, PGE(2) differentially affects T cell activation, cytokine production, and phenotype depending on the activation signals received by the T cells. This was correlated with a distinct pattern of the PGE(2) receptors expressed, with EP4 being preferentially induced by CD46 activation. Indeed, addition of an EP4 antagonist could reverse the effects observed on cytokine production after CD46 costimulation. These data demonstrate a novel role of the PGE(2)-EP4 axis in CD46 functions, which might at least partly explain the diverse roles of PGE(2) in T cell functions.  相似文献   
26.
27.
The neuroendocrine bag cell neurons of the marine mollusk Aplysia produce prolonged inhibition that lasts for more than 2 hr. We purified a peptide from the abdominal ganglion that mimics this inhibition. Mass spectrometry and microsequence analysis indicate that the peptide is 40 aa long and is amidated at its carboxyl terminus. It is highly homologous to vertebrate neuropeptide Y (NPY) and other members of the pancreatic polypeptide family. As determined from cloned cDNA, the gene coding for the precursor protein shares a common structural organization with genes encoding precursors of the vertebrate family. The peptides may therefore have arisen from a common ancestral gene. Bag cell neurons are immunoreactive for Aplysia NPY, and Northern blot analysis indicates that as with its vertebrate counterparts, the peptide is abundantly expressed in the CNS. This suggests that peptides related to NPY may have important functions in the nervous system of Aplysia as well as in other invertebrates.  相似文献   
28.
The gene product ahnak has been identified from extra-embryonic mesoderm cDNA enriched using a subtractive hybridization approach modified for using small amounts of starting material. Clones for cyclin D2 and H19 have also been isolated as being preferentially enriched in the extra-embryonic mesoderm compared with the embryo proper of embryonic day (E) 7.5 neural plate stage mouse embryos. The differential expression of these genes was confirmed at gastrulation stage using in situ hybridization. More detailed analysis of the human genomic ahnak sequence suggests that its highly repetitive structure was formed by unequal cross-over and gene conversion. During organogenesis, ahnak is expressed in a variety of tissues, including migratory mesenchyme. By E12.5, the major site of expression of ahnak is craniofacial mesenchyme. Immunohistochemical analysis has shown that ahnak protein is expressed mainly at the cell membrane of migratory mesenchymal cells, primarily in the nucleus of bone growth plate cells and mostly in the cytoplasm of differentiating nasal epithelia. The potential functions of ahnak are discussed in light of these results.  相似文献   
29.
The matrix-mediated enamel biomineralization involves secretion of the enamel specific amelogenin proteins that through self-assembly into nanosphere structures provide the framework within which the initial enamel crystallites are formed. During enamel mineralization, amelogenin proteins are processed by tooth-specific proteinases. The aim of this study was to explore the factors that affect the activity of enamel proteases to process amelogenins. Two factors including amelogenin self-assembly and enzyme specificity are considered. We applied a limited proteolysis approach, combined with mass spectrometry, in order to determine the surface accessibility of conserved domains of amelogenin assemblies. A series of commercially available proteinases as well as a recombinant enamelysin were used, and their proteolytic actions on recombinant amelogenin were examined under controlled and limited conditions. The N-terminal region of the recombinant mouse amelogenin rM179 was found to be more accessible to tryptic digest than the C-terminal region. The endoproteinase Glu-C cleaved amelogenin at both the N-terminal (E18/V) and C-terminal (E178/V) sites. Chymotrypsin cleaved amelogenin at both the carboxy- (F151/S) and amino-terminal (W25/Y) regions. Interestingly, the peptide bond F/S152 was also recognized by the action of enamelysin on recombinant mouse amelogenin whereas thermolysin cleaved the S152/M153 peptide bond in addition to T63/L64 and I159/L160 and M29/I30 bonds. It was then concluded that regions at both the carboxy- and amino-terminal were exposed on the surface of amelogenin nanospheres when the N-terminal 17 amino acid residues were proposed to be protected from proteolysis, presumably as the result of their involvement in direct protein-protein interaction. Cleavage around the FSM locus occurred by recombinant enamelysin under limited conditions, in both mouse (F151/S152) and pig amelogenins (S148/M). Our in vitro observations on the limited proteolysis of amelogenin by enamelysin suggest that enamelysin cleaved amelogenin at the C-terminal region showing a preference of the enzyme to cleave the S/M and F/S bonds. The present limited proteolysis studies provided insight into the mechanisms of amelogenin degradation during amelogenesis.  相似文献   
30.

Many lowland floodplain habitats have been disconnected from their rivers by flood defence banks. Removing or lowering these banks can reinstate regular flooding and thus restore these important wetland plant communities. In this study we analyse changes in wetland hydrology and plant community composition following the lowering of flood defence banks at a floodplain of the River Don in the United Kingdom (UK). The aim of the restoration project was to improve the quality of “floodplain grazing marsh” habitat, which is a group of wetland communities that are of conservation interest in the UK. We analyse changes in species richness and community composition over a period of 6 years, and compare the presence of indicator species from the target floodplain grazing marsh plant communities. The lowering of the flood banks increased the frequency of flood events, from an estimated average of 1.7 floods per year to 571 floods per year. The increased flooding significantly increased the proportion of time that the wetland was submerged, and the heterogeneity in hydrological conditions within the floodplain. There were significant differences in composition between the pre-restoration and restored plant communities. Plants with traits for moisture tolerance became more abundant, although the communities did not contain significantly more ‘target’ floodplain grazing marsh species at the end of the study period than prior to restoration. Colonisation by floodplain grazing marsh species may have been limited because environmental conditions were not yet suitable, or because of a shortage of colonising propagules. While the desired target plant community has not been achieved after 5 years, it is encouraging that the community has changed dynamically as a result of hydrological changes, and that moisture-tolerant species have increased in occurrence. Over the next few decades, the restored flood regime may cause further environmental change or colonisation events, thus helping increase the occurrence of desired floodplain grazing marsh indicator species.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号