首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   503篇
  免费   63篇
  国内免费   1篇
  2022年   5篇
  2021年   13篇
  2020年   8篇
  2019年   7篇
  2018年   11篇
  2017年   10篇
  2016年   17篇
  2015年   13篇
  2014年   28篇
  2013年   10篇
  2012年   19篇
  2011年   31篇
  2010年   11篇
  2009年   17篇
  2008年   23篇
  2007年   25篇
  2006年   15篇
  2005年   23篇
  2004年   15篇
  2003年   12篇
  2002年   19篇
  2001年   15篇
  2000年   13篇
  1999年   17篇
  1998年   6篇
  1997年   8篇
  1996年   6篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   16篇
  1991年   9篇
  1990年   9篇
  1989年   4篇
  1988年   4篇
  1987年   4篇
  1986年   8篇
  1985年   6篇
  1984年   6篇
  1983年   7篇
  1982年   4篇
  1981年   7篇
  1980年   4篇
  1978年   5篇
  1975年   6篇
  1974年   7篇
  1972年   8篇
  1971年   5篇
  1970年   6篇
  1969年   3篇
排序方式: 共有567条查询结果,搜索用时 15 毫秒
501.
502.
Naturally occurring variation in wild species can be used to increase the genetic diversity of cultivated crops and improve agronomic value. Populations of introgression lines carrying wild species alleles afford an opportunity to identify traits associated with the introgressed regions, and facilitate characterization of the biochemistry and genetics underlying these phenotypes. Understanding plant metabolic pathways and the interactions between genes, phenotype, and environment is fundamental to functional genomics. Successful analysis of the complex network of plant metabolism requires analytical methods able to record information on as many metabolites as possible. Metabolite profiling is used to provide a snapshot of the metabolome in samples which differ in a known factor such as genetic background. Differences between the metabolite profiles can identify those metabolites/metabolic pathways affected by the introgression and allow genetic maps for metabolic alterations to be established. A Time-of-Flight Mass Spectrometry method is presented, with associated data reduction, used for profiling aqueous metabolites fom tomato. Analysis of ripe fruits of two tomato species, Lycopersicon esculentum and L. pennellii, showed differences in the amounts of many metabolites, including organic acids and sugars. Six introgression lines, L. pennellii introgressions within L. esculentum, were also examined and showed that Principal Component Analysis can reveal subtle differences in metabolism of the introgressed lines when compared to their parents.  相似文献   
503.
Adding NAD to murine T lymphocytes inhibits their functions and induces annexin V binding. This report shows that NAD induces cell death in a subset of T cells within seconds whereas others do not die until many hours later. Low NAD concentrations (<10 microM) suffice to trigger rapid cell death, which is associated with annexin V binding and membrane pore formation, is not blocked by the caspase inhibitor Z-VADfmk, and requires functional P2X7 receptors. The slower induction of death requires higher NAD concentrations (>100 microM), is blocked by caspase inhibitor Z-VADfmk, is associated with DNA fragmentation, and does not require P2X7 receptors. T cells degrade NAD to ADP-ribose (ADPR), and adding ADPR to T cells leads to slow but not rapid cell death. NAD but not ADPR provides the substrate for ADP-ribosyltransferase (ART-2)-mediated attachment of ADP-ribosyl groups to cell surface proteins; expression of ART-2 is required for NAD to trigger rapid but not slow cell death. These results support the hypothesis that cell surface ART-2 uses NAD but not ADPR to attach ADP-ribosyl groups to the cell surface, and that these groups act as ligands for P2X7 receptors that then induce rapid cell death. Adding either NAD or ADPR also triggers a different set of mechanisms, not requiring ART-2 or P2X7 receptors that more slowly induce cell death.  相似文献   
504.
Human filarial parasites cause chronic infection associated with long-term down-regulation of the host's immune response. We show here that CD4+ T cell regulation is the main determinant of parasite survival. In a laboratory model of infection, using Litomosoides sigmodontis in BALB/c mice, parasites establish for >60 days in the thoracic cavity. During infection, CD4+ T cells at this site express increasing levels of CD25, CTLA-4, and glucocorticoid-induced TNF receptor family-related gene (GITR), and by day 60, up to 70% are CTLA-4(+)GITR(high), with a lesser fraction coexpressing CD25. Upon Ag stimulation, CD4(+)CTLA-4(+)GITR(high) cells are hyporesponsive for proliferation and cytokine production. To test the hypothesis that regulatory T cell activity maintains hyporesponsiveness and prolongs infection, we treated mice with Abs to CD25 and GITR. Combined Ab treatment was able to overcome an established infection, resulting in a 73% reduction in parasite numbers (p < 0.01). Parasite killing was accompanied by increased Ag-specific immune responses and markedly reduced levels of CTLA-4 expression. The action of the CD25(+)GITR+ cells was IL-10 independent as in vivo neutralization of IL-10R did not restore the ability of the immune system to kill parasites. These data suggest that regulatory T cells act, in an IL-10-independent manner, to suppress host immunity to filariasis.  相似文献   
505.
Haring SJ  Halley GR  Jones AJ  Malone RE 《Genetics》2003,165(1):101-114
This study addresses three questions about the properties of recombination hotspots in Saccharomyces cerevisiae: How much DNA is required for double-strand-break (DSB) site recognition? Do naturally occurring DSB sites compete with each other in meiotic recombination? What role does the sequence located at the sites of DSBs play? In S. cerevisiae, the HIS2 meiotic recombination hotspot displays a high level of gene conversion, a 3''-to-5'' conversion gradient, and two DSB sites located approximately 550 bp apart. Previous studies of hotspots, including HIS2, suggest that global chromosome structure plays a significant role in recombination activity, raising the question of how much DNA is sufficient for hotspot activity. We find that 11.5 kbp of the HIS2 region is sufficient to partially restore gene conversion and both DSBs when moved to another yeast chromosome. Using a variety of different constructs, studies of hotspots have indicated that DSB sites compete with one another for DSB formation. The two naturally occurring DSBs at HIS2 afforded us the opportunity to examine whether or not competition occurs between these native DSB sites. Small deletions of DNA at each DSB site affect only that site; analyses of these deletions show no competition occurring in cis or in trans, indicating that DSB formation at each site at HIS2 is independent. These small deletions significantly affect the frequency of DSB formation at the sites, indicating that the DNA sequence located at a DSB site can play an important role in recombination initiation.  相似文献   
506.
The centrosome and nucleus are intimately associated in most animal cells, yet the significance of this interaction is unknown. Mutations in the zyg-12 gene of Caenorhabditis elegans perturb the attachment of the centrosome to the nucleus, giving rise to aberrant spindles and ultimately, DNA segregation defects and lethality. These phenotypes indicate that the attachment is essential. ZYG-12 is a member of the Hook family of cytoskeletal linker proteins and localizes to both the nuclear envelope (via SUN-1) and centrosomes. ZYG-12 is able to bind the dynein subunit DLI-1 in a two-hybrid assay and is required for dynein localization to the nuclear envelope. Loss of dynein function causes a low percentage of defective centrosome/nuclei interactions in both Drosophila and Caenorhabditis elegans. We propose that dynein and ZYG-12 move the centrosomes toward the nucleus, followed by a ZYG-12/SUN-1-dependent anchorage.  相似文献   
507.
Initiation of meiotic recombination in the yeast Saccharomyces cerevisiae requires at least 10 gene products. The initiation event creates double-strand breaks, which are then processed by other recombination enzymes. A variety of classical observations, such as the existence of recombination nodules, have suggested that the proteins catalyzing recombination form a complex. A variety of lines of evidence indicate that Rad50p, Mre11p, and Xrs2p interact, and genetic data suggesting interactions between Rec102p and Rec104p have been reported. It has recently been shown that Spo11p coimmunoprecipitates with Rec102p in meiosis as well. In this paper, we provide genetic and biochemical evidence that the meiosis-specific proteins Rec102p, Rec104p, and Spo11p all interact with each other in meiosis. Furthermore, we demonstrate that the interaction between Rec102p and Spo11p does not require Rec104p. Likewise, the interaction between Rec104p and Rec102p does not require Spo11p, although Spo11p may stabilize that association. The interactions suggest that Spo11p, Rec102p, and Rec104p may form a trimeric complex during the initiation of recombination.  相似文献   
508.
Final oxidation products generated from guanosine and 2'-deoxyguanosine by reaction with dimethyldioxirane have been identified as 4-amidinocarbamoyl-5-hydroxyimidazoles.  相似文献   
509.
510.
Malone JP  George A  Veis A 《Proteins》2004,54(2):206-215
The in vitro rate and specificity of fibrillogenesis in type I collagen depends on the integrity of the amino (N)-telopeptide domain. In vivo an intact N-telopeptide domain is also required for normal fibril assembly. Although Chou-Fasman predictions and NMR studies suggested that a type I beta-turn could be induced in alpha1(I) N-telopeptide chains, computer modeling did not identify ordered structures. Nevertheless, X-ray analysis and electron tomography studies have shown that the N-telopeptide is in one of the most highly ordered fibril domains. This study was undertaken to determine if the docking of the N-telopeptide to its helix receptor domain could induce the telopeptides to take up a specific conformation. With use of molecular modeling suite of programs, a (Gly-Pro-Pro)(n) triple-helical structure was built on the basis of high-resolution X-ray crystallographic coordinates and then replaced with the actual bovine collagen residues 924-938, the triple-helical alpha1(I)-N-telopeptide-receptor sequences. Energy minimization produced a modified triple-helical conformation. The bovine alpha1(I) N-telopeptide sequence was similarly minimized and docked to this receptor. The docking induced an ordered conformation with a stabilizing hydrogen bond in the N-telopeptide and, importantly, a reciprocal reordering of the triple-helical conformation in the binding domain. This docked structure placed Lys residues in both telopeptide and helix in the correct locations for cross-link formation. The modeling has been extended to the three-chain N-telopeptide domain and finally to the construction of the Hulmes-Miller quasi-hexagonal packing structure. Each N-telopeptide domain can form linkages with two adjacent, aligned helix receptor domains. The telopeptides and the order of staggering of the three chains in the helix play crucial roles in the packing and intrafibrillar cross-linking patterns and the relative azimuthal orientations of adjacent molecules in the fibril. The models confirm the high order in the N-telopeptide 4D overlap zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号