首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   17篇
  2021年   2篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   5篇
  2011年   9篇
  2010年   4篇
  2009年   2篇
  2008年   13篇
  2007年   10篇
  2006年   6篇
  2005年   4篇
  2004年   8篇
  2003年   6篇
  2002年   3篇
  2001年   6篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   5篇
  1992年   2篇
  1991年   5篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1963年   1篇
排序方式: 共有165条查询结果,搜索用时 15 毫秒
141.
G. Malmberg 《Hydrobiologia》1986,132(1):23-29
The evolution of certain ontogenetic processes appears to be of special importance to subsequent evolution of a phyletic line, and their occurrence suggests there are various evolutionary capacity levels occupied by major taxa. Two groups that are at the same evolutionary capacity level probably originated in common within that level, which in turn is often shared with several other groups. Morphogenesis by invagination is characteristic of an early evolutionary capacity level common to poriferans, cnidarians, deuterostomes, and platyhelminths, inter alia. In the early ontogeny of the former three groups, this process produces the blastopore and archenteron, but in platyhelminths, e.g. rhabdocoels, two different processes form the digestive system: the mouth forms by invagination and the intestine by a split in the mesenchyme/parenchyma. I have selected some characters and processes to illustrate evolutionary capacity levels and to describe the possible origin of a number of invertebrate groups from various levels and their inter-relationships. My analysis on the basis of evolutionary capacity levels suggests that the deuterostomes originated early (very likely before mollusks and annelids), that tegumental absorption of nutriments is the original mode of nutriment uptake and so predates intestinal ingestion in Platyhelminthes, that ontogenetic characters show that the presumed origin of cercomeromorphaeans from rhabdocoels is improbable, and that features of ontogeny and life cycles indicate that the major parasitic platyhelminth classes arose through progressive rather than regressive evolution. Thus the non-parasitic and the parasitic platyhelminth classes very likely belong to separate evolutionary lines, all originating from the same evolutionary capacity level.  相似文献   
142.
A recombinant strain of S. clavuligerus (LHM100) that contains an additional copy of the gene (lat) encoding lysine -aminotransferase (LAT) was analyzed and compared to the wild-type for intracellular concentrations of primary metabolites involved in cephamycin C biosynthesis. This strain had been shown previously to produce higher levels of the antibiotic because of increased levels of LAT, a rate-limiting enzyme involved in the production of -amino-adipic acid. The results showed that the overall growth kinetics of the two strains were comparable, including the intracellular concentrations of cysteine, valine and lysine. In contrast, 60% higher antibiotic production was observed in LHM100, which reflected a significant temporal variation in specific metabolite production rate. The time profile of LAT activity was consistently higher in LHM100; however, -aminoadipic acid levels showed unexpected variation during the growth cycle. These results support the proposal that rate-limiting enzymes in cephamycin C biosynthesis are temporally controlled, and indicate that optimization of metabolite production will require differential overexpression of several biosynthetic genes.  相似文献   
143.
Arginine decarboxylase (ARGdc) is the first enzyme in one of the two pathways to putrescine in plants. ARGdc enzyme activity has been shown to be induced by many environmental factors, including potassium deficiency stress. We investigated the mechanism for induction of ARGdc activity during potassium deficiency stress in Arabidopsis thaliana (L.) Heynh. We show that A. thaliana responds to potassium deficiency stress by increasing ARGdc activity by up to 10-fold over unstressed plants with a corresponding increase in putrescine levels of up to 20-fold. Spermidine and spermine levels do not increase proportionately. Northern analysis showed no increase in ARGdc mRNA levels correlated with the increase in ARGdc enzyme activity. Western analysis revealed that there was no difference between ARGdc protein levels in stressed plants compared with controls. The increase in ARGdc enzyme activity due to potassium deficiency stress does not appear to involve changes in mRNA or protein abundance.  相似文献   
144.
The mercury resistance (mer) operon of plasmid R100 was cloned onto various plasmid vectors to study the effect of mer gene amplification on the rate of Hg2+ reduction by Escherichia coli cells. The plasmids were maintained at copy numbers ranging from 3 to 140 copies per cell. The overall Hg2+ reduction rate of intact cells increased only 2.4-fold for the 47-fold gene amplification. In contrast, the rate of the cytoplasmic reduction reaction, measured in permeabilized cells, increased linearly with increasing gene copy number, resulting in a 6.8-fold overall amplification. RNA hybridizations indicated that mRNA of the cytoplasmic mercuric reductase (merA gene product) increased 11-fold with the 47-fold gene amplification, while mRNA of the transport protein (merT gene product) increased only 5.4-fold. Radiolabeled proteins produced in maxicells were used to correlate the expression levels of the mer polypeptides with the measured reduction rates. The results indicated that, with increasing gene copy number, there was an approximately 5-fold increase in the merA gene product compared with a 2.5-fold increase in the merT gene product. These data demonstrate a parallel increase of Hg2+ reduction activity and transport protein expression in intact cells with plasmids with different copy numbers. In contrast, the expression level of the mercuric reductase gene underwent higher amplification than that of the transport genes at both the RNA and protein levels as plasmid copy number increased.  相似文献   
145.
Polyamines are small, positively charged aliphatic amines that play a variety of roles in plant physiology. Putrescine, spermidine, and spermine are usually what are collectively meant by the term polyamines, although plants also have a variety of other related compounds and secondary product conjugates to polyamines. Organisms synthesize putrescine, spermidine, and spermine by pathways leading from ornithine, arginine, and SAM, with three of the important enzymes being amino acid decarboxylases. There has been recent progress in understanding plant polyamines, both their function and the regulation of their synthesis, as a result of molecular genetic investigations. The cDNAs for many of the key enzymes have been cloned and se-quenced, and studies on regulation of the enzymes have begun. Mutational and transgenic approaches are being used to perturb the pathway. Some of the phenotypes observed suggest interactions between polyamines and either ethylene or cytokinin, consistent with some of the correlations observed many years previously by polyamine physiologists. These studies, while still in their early stages, should improve our understanding of polyamine synthesis, but difficult problems remain to be solved before we can answer the question: What are the biological functions and associated mechanisms of action of polyamines?  相似文献   
146.
The ZPT2-2 gene belongs to the EPF gene family in petunia (Petunia hybrida), which encodes proteins with TFIIIA-type zinc-finger DNA-binding motifs. To elucidate a possible function for ZPT2-2, we analyzed its pattern of expression in relation to different developmental and physiological stress signals. The activity of the ZPT2-2 promoter was analyzed using a firefly luciferase (LUC) reporter gene, allowing for continuous measurements of transgene activity in planta. We show that ZPT2-2::LUC is active in all plant tissues, but is strongly modulated in cotyledons upon germination, in leaves in response to desiccation, cold treatment, wounding, or ultraviolet-B light, and in petal tissue in response to pollination of the stigma. Analysis of mRNA levels indicated that the modulations in ZPT2-2::LUC expression reflect modulations in endogenous ZPT2-2 gene expression. The change in ZPT2-2::LUC activity by cold treatment, wounding, desiccation, and ultraviolet-B light suggest that the phytohormones ethylene and jasmonic acid are involved in regulating the expression of ZPT2-2. Although up-regulation of expression of ZPT2-2 can be blocked by inhibitors of ethylene perception, expression in plants is not induced by exogenously applied ethylene. The application of jasmonic acid does result in an up-regulation of gene activity and, thus, ZPT2-2 may play a role in the realization of the jasmonic acid hormonal responses in petunia.  相似文献   
147.
The MSC16 cucumber (Cucumis sativus L.) mutant with lower activity of mitochondrial Complex I was used to study the influence of mitochondrial metabolism on whole cell energy and redox state. Mutant plants had lower content of adenylates and NADP(H) whereas the NAD(H) pool was similar as in wild type. Subcellular compartmentation of adenylates and pyridine nucleotides were studied using the method of rapid fractionation of protoplasts. The data obtained demonstrate that dysfunction of mitochondrial respiratory chain decreased the chloroplastic ATP pool. No differences in NAD(H) pools in subcellular fractions of mutated plants were observed; however, the cytosolic fraction was highly reduced whereas the mitochondrial fraction was more oxidized in MSC16, as compared to WTc. The NADP(H) pool in MSC16 protoplasts was greatly decreased and the chloroplastic NADP(H) pool was more reduced, whereas the extrachloroplastic pool was much more oxidized, than in WTc protoplast. Changes in nucleotides distribution in cucumber MSC16 mutant were compared to changes found in tobacco (Nicotiana sylvestris) CMS II mitochondrial mutant. In contrast to MSC16 cucumber, the content of adenylates in tobacco mutant was much higher than in tobacco wild type. The differences were more pronounced in leaf tissue collected after darkness than in the middle of the photoperiod. Results obtained after tobacco protoplast fractionating showed that the increase in CMS II adenylate content was mainly due to a higher level in extrachloroplast fraction. Both mutations have a negative effect on plant growth through perturbation of chloroplast/mitochondrial interactions.  相似文献   
148.
The discovery of a series of small molecule alpha4beta2 nAChR potentiators is reported. The structure-activity relationship leads to potent compounds selective against nAChRs including alpha3beta2 and alpha3beta4 and optimized for CNS penetrance. Compounds increased currents through recombinant alpha4beta2 nAChRs, yet did not compete for binding with the orthosteric ligand cytisine. High potency and efficacy on the rat channel combined with good PK properties will allow testing of the alpha4beta2 potentiator mechanism in animal models of disease.  相似文献   
149.
Time-of-flight secondary-ion-mass-spectrometry (TOF-SIMS) was utilized to address the issue of co-localization of cholesterol, phosphocholine and galactosylceramide in rat cerebellar cortex. Rat cerebellum was fixed, freeze-protected by sucrose, frozen and sectioned by cryoultramicrotomy and dried at room temperature. The samples were analyzed in an imaging TOF-SIMS instrument equipped with a Bi(1-7)+-source. The cholesterol signal (m/z 369 and 385) was localized in Purkinje cells and in nuclei of granular layer cells. The phosphocholine headgroup of phosphatidylcholine and sphingomyelin was localized by imaging a specific fragment (m/z 86). This signal was localized in the molecular layer of cerebellar cortex, in Purkinje cells and in parts of the granular layer probably representing the synapse-rich glomeruli. The galactosylceramide was localized by imaging the quasi-molecular ions at m/z 835 and 851, showed a clear colocalization with cholesterol, but also a specific localization in dots (diameter 相似文献   
150.
The effect of mutations (V344E and T343A/V344E) in the third intracellular loop of the serotonin 5-HT(1A) receptor expressed transiently in human embryonic kidney 293 cells have been examined in terms of receptor/G protein interaction and signaling. Serotonin, (R)-8-hydroxy-2-dipropylaminotetralin [(R)-8-OH-DPAT], and buspirone inhibited cyclic AMP production in cells expressing native and mutant 5-HT(1A) receptors. Serotonin, however, produced inverse bell-shaped cyclic AMP concentration-response curves at native and mutant 5-HT(1A) receptors, indicating coupling not only to G(i)/G(o), but also to G(s). (R)-8-OH-DPAT, however, induced stimulation of cyclic AMP production only after inactivation of G(i)/G(o) proteins by pertussis toxin and only at the mutant receptors. The partial agonist buspirone was unable to induce coupling to G(s) at any of the receptors, even after pertussis toxin treatment. The basal activities of native and mutant 5-HT(1A) receptors in suppressing cyclic AMP levels were not found to be significantly different. The receptor binding characteristics of the native and mutant receptors were investigated using the novel 5-HT(1A) receptor antagonist [(3)H]NAD-299. For other receptors, analogous mutations have produced constitutive activation. This does not occur for the 5-HT(1A) receptor, and for this receptor the mutations seem to alter receptor/G protein coupling, allowing ligand-dependent coupling of receptor to G(s) in addition to G(i)/G(o) proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号