首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   789篇
  免费   37篇
  826篇
  2023年   4篇
  2022年   16篇
  2021年   23篇
  2020年   13篇
  2019年   16篇
  2018年   29篇
  2017年   19篇
  2016年   30篇
  2015年   32篇
  2014年   48篇
  2013年   60篇
  2012年   73篇
  2011年   60篇
  2010年   28篇
  2009年   31篇
  2008年   29篇
  2007年   35篇
  2006年   31篇
  2005年   30篇
  2004年   26篇
  2003年   22篇
  2002年   17篇
  2001年   5篇
  2000年   11篇
  1999年   8篇
  1998年   5篇
  1997年   6篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   13篇
  1991年   10篇
  1990年   9篇
  1989年   5篇
  1988年   6篇
  1987年   3篇
  1986年   6篇
  1985年   6篇
  1984年   6篇
  1983年   5篇
  1981年   2篇
  1980年   2篇
  1979年   6篇
  1978年   5篇
  1977年   4篇
  1976年   2篇
  1975年   3篇
  1974年   6篇
  1968年   2篇
排序方式: 共有826条查询结果,搜索用时 31 毫秒
721.
Amphiphilic copolymers containing different amounts of poly(ethylene glycol)-fluoroalkyl acrylate and polysiloxane methacrylate units were blended with a poly(dimethyl siloxane) (PDMS) matrix in different proportions to investigate the effect of both copolymer composition and loading on the biological performance of the coatings. Laboratory bioassays revealed optimal compositions for the release of sporelings of Ulva linza, and the settlement of cypris larvae of Balanus amphitrite. The best-performing coatings were subjected to field immersion tests. Experimental coatings containing copolymer showed significantly reduced levels of hard fouling compared to the control coatings (PDMS without copolymer), their performance being equivalent to a coating based on Intersleek 700?. XPS analysis showed that only small amounts of fluorine at the coating surface were sufficient for good antifouling/fouling-release properties. AFM analyses of coatings under immersion showed that the presence of a regular surface structure with nanosized domains correlated with biological performance.  相似文献   
722.
Salacia chinensis L., a perennial medicinal plant, is well-known for its well-documented anti-diabetic properties. The daily growing demand in pharmaceutical industry is stimulating the conservation and wide-ranging production of the plant using plant tissue culture techniques (micropropagation). In the present study, the plants generated by direct micropropagation from nodal explants were assessed using fluorescently labeled RAPD (FRAPD) primers. Although standard RAPD primer bands in agarose gel showed genetic stability, using FRAPD analysis in genetic DNA sequencer as a novel strategy showed more accurate and reliable method has indicated by the evidence in 5% genetic variation. Antioxidant and anti-diabetic activities of micropropagated plants versus mother plant were examined using DPPH, FRAP, α-amylase, and α-glucosidase assays. The results showed that the micropropagated plants, which are able to produce higher amount of secondary metabolites than the mother plant, possess higher in vitro antioxidant and anti-diabetic properties.  相似文献   
723.
Membrane-bound matrix metalloproteinase 16 (MMP16/MT3-MMP) is considered a drug target due to its role(s) in disease processes such as cancer and inflammation. Biochemical characterization of MMP16 is critical for developing new generation MMP inhibitors (MMPi), which exhibit high efficacies and selectivities. Herein, a modified over-expression and purification protocol was used to prepare the catalytic domain of MMP16 (cdMMP16). The resulting recombinant enzyme exhibited steady-state kinetic constants of K m = 10.6 ± 0.7 μM and k cat = 1.14 ± 0.02 s?1, when using FS-6 as substrate, and the enzyme bound 1.8 ± 0.1 eq of Zn(II). The enzymatic activity of cdMMP16 is salt concentration-dependent, and cdMMP16 exhibits autoproteolytic activity under certain conditions, which may be related to an in vivo regulatory mechanism of MMP16 and of other membrane-type MMPs (MT-MMPs). Co(II)-substituted analogs (Co2- and ZnCo) of cdMMP16 were prepared and characterized using several spectroscopic techniques, such as UV–Vis, 1H NMR, and EXAFS spectroscopies. A well-characterized cdMMP16 is now available for future inhibitor screening efforts.  相似文献   
724.
Proteolytic fragments of amyloid and post-translational modification of tau species in Cerebrospinal fluid (CSF) as well as cerebral amyloid deposition are important biomarkers for Alzheimer’s Disease. We conducted genome-wide association study to identify genetic factors influencing CSF biomarker level, cerebral amyloid deposition, and disease progression. The genome-wide association study was performed via a meta-analysis of two non-overlapping discovery sample sets to identify genetic variants other than APOE ε4 predictive of the CSF biomarker level (Aβ1–42, t-Tau, p-Tau181P, t-Tau:Aβ1–42 ratio, and p-Tau181P:Aβ1–42 ratio) in patients enrolled in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. Loci passing a genome-wide significance threshold of P < 5 x 10−8 were followed-up for replication in an independent sample set. We also performed joint meta-analysis of both discovery sample sets together with the replication sample set. In the discovery phase, we identified variants in FRA10AC1 associated with CSF Aβ1–42 level passing the genome-wide significance threshold (directly genotyped SNV rs10509663 P FE = 1.1 x 10−9, imputed SNV rs116953792 P FE = 3.5 x 10−10), rs116953792 (P one-sided = 0.04) achieved replication. This association became stronger in the joint meta-analysis (directly genotyped SNV rs10509663 P FE = 1.7 x 10−9, imputed SNV rs116953792 P FE = 7.6 x 10−11). Additionally, we identified locus 15q21 (imputed SNV rs1503351 P FE = 4.0 x 10−8) associated with CSF Aβ1–42 level. No other variants passed the genome-wide significance threshold for other CSF biomarkers in either the discovery sample sets or joint analysis. Gene set enrichment analyses suggested that targeted genes mediated by miR-33, miR-146, and miR-193 were enriched in various GWAS analyses. This finding is particularly important because CSF biomarkers confer disease susceptibility and may be predictive of the likelihood of disease progression in Alzheimer’s Disease.  相似文献   
725.
During the course of the COVID-19 pandemic, large-scale genome sequencing of SARS-CoV-2 has been useful in tracking its spread and in identifying variants of concern (VOC). Viral and host factors could contribute to variability within a host that can be captured in next-generation sequencing reads as intra-host single nucleotide variations (iSNVs). Analysing 1347 samples collected till June 2020, we recorded 16 410 iSNV sites throughout the SARS-CoV-2 genome. We found ∼42% of the iSNV sites to be reported as SNVs by 30 September 2020 in consensus sequences submitted to GISAID, which increased to ∼80% by 30th June 2021. Following this, analysis of another set of 1774 samples sequenced in India between November 2020 and May 2021 revealed that majority of the Delta (B.1.617.2) and Kappa (B.1.617.1) lineage-defining variations appeared as iSNVs before getting fixed in the population. Besides, mutations in RdRp as well as RNA-editing by APOBEC and ADAR deaminases seem to contribute to the differential prevalence of iSNVs in hosts. We also observe hyper-variability at functionally critical residues in Spike protein that could alter the antigenicity and may contribute to immune escape. Thus, tracking and functional annotation of iSNVs in ongoing genome surveillance programs could be important for early identification of potential variants of concern and actionable interventions.  相似文献   
726.
727.
In corn seedling roots, colchicine and the dinitroaniline herbicideoryzalin cause swelling and inhibition of elongation which seemto be interconnected responses, yet they can be separated. First,both colchicine (10–3 M) and oryzalin (10–6 M) affectelongation (2–4 hr) well before swelling (8–10 hr).Second, a short (4 hr) oryzalin treatment produces maximal inhibitionof elongation but not maximal swelling. Third, a combinationof colchicine and oryzalin (at concentrations which give maximalor saturating effects on swelling and elongation when appliedsingly) produces a greater effect on swelling (but not elongation)than either alone. Thus swelling and inhibition of elongationare not related in a simple reciprocal relationship and maybe, at least in part, separate responses, and colchicine andoryzalin may not act in completely identical ways. (Received June 14, 1977; )  相似文献   
728.
Larval brain ganglia of Drosophila nasuta were cultured in vitro in the presence of 5-bromodeoxyuridine for 1 or 5 h at 24° C and the air-dried chromosome preparations stained by the Hoechst 33258-Giemsa technique to reveal bromodeoxyuridine induced sister chromatid differentiation. In 1 h as well as 5 h preparations, 10–15% of well spread metaphase plates show a sister chromatid differentiation in only C-band heterochromatin regions of different chromosomes. We infer that this sister chromatid differentiation in all heterochromatic regions is seen after bromodeoxyuridine incorporation for only one replication cycle and is related to the presence of asymmetric A-T rich satellite sequences in all the C-band regions of D. nasuta karyotype.  相似文献   
729.
The characterization of residual structures persistent in unfolded proteins in concentrated denaturant solution is currently an important issue in studies of protein folding because the residual structure present, if any, in the unfolded state may form a folding initiation site and guide the subsequent folding reactions. Here, we studied the hydrogen/deuterium (H/D)-exchange behavior of unfolded human ubiquitin in 6 M guanidinium chloride. We employed a dimethylsulfoxide (DMSO)-quenched H/D-exchange NMR technique with the use of spin desalting columns, which allowed us to perform a quick medium exchange from 6 M guanidinium chloride to a quenching DMSO solution. Based on the backbone resonance assignment of ubiquitin in the DMSO solution, we successfully investigated the H/D-exchange kinetics of 60 identified peptide amide groups in the ubiquitin sequence. Although a majority of these amide groups were not protected, certain amide groups involved in a middle helix (residues 23–34) and an N-terminal β-hairpin (residues 2–16) were significantly protected with a protection factor of 2.1–4.2, indicating that there were residual structures in unfolded ubiquitin and that these amide groups were more than 52% hydrogen bonded in the residual structures. We show that the hydrogen-bonded residual structures in the α-helix and the β-hairpin are formed even in 6 M guanidinium chloride, suggesting that these residual structures may function as a folding initiation site to guide the subsequent folding reactions of ubiquitin.  相似文献   
730.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号