首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   14篇
  216篇
  2023年   2篇
  2022年   3篇
  2020年   2篇
  2017年   2篇
  2016年   2篇
  2015年   7篇
  2014年   7篇
  2013年   9篇
  2012年   9篇
  2011年   8篇
  2010年   2篇
  2009年   4篇
  2008年   8篇
  2007年   8篇
  2006年   4篇
  2005年   7篇
  2004年   11篇
  2003年   8篇
  2002年   3篇
  2001年   10篇
  2000年   6篇
  1999年   3篇
  1998年   6篇
  1997年   5篇
  1996年   5篇
  1992年   5篇
  1991年   6篇
  1990年   7篇
  1989年   6篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1984年   3篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1978年   2篇
  1975年   2篇
  1974年   5篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1960年   2篇
  1957年   1篇
  1955年   1篇
  1953年   2篇
  1952年   1篇
  1941年   1篇
  1940年   1篇
  1930年   1篇
排序方式: 共有216条查询结果,搜索用时 15 毫秒
21.
By introducing additional T-DNA borders into a binary plasmid used in Agrobacterium-mediated plant transformation, previous studies have demonstrated that the marker gene and the gene of interest (GOI) can be carried by independent T-strands, which sometimes integrate in unlinked loci in the plant genome. This allows the recovery of marker-free transgenic plants through genetic segregation in the next generation. In this study, we have found that by repositioning the selectable marker gene in the backbone and leaving only the GOI in the T-DNA region, a regular two-border binary plasmid was able to generate marker-free transgenic maize plants more efficiently than a conventional single binary plasmid with multiple T-DNA borders. These results also provide evidence that both the right and left borders can initiate and terminate T-strands. Such non-canonical initiation and termination of T-strands may be the basis for the elevated frequencies of cotransformation and unlinked insertions.  相似文献   
22.
Two analogs of the anticodon arm of yeast tRNAPhe (residues 28-43), in which G43 was replaced by the photoreactive nucleosides 2-azidoadenosine and 8-azidoadenosine, have been used to create 'zero-length' cross-links to ribosomal components at the peptidyl-tRNA binding site (P site) of 30 S subunits from the Escherichia coli ribosome. To prepare the analogs, 2-azidoadenosine and 8-azidoadenosine bisphosphates were first ligated to the 3' end of the anticodon-containing dodecanucleotide ACmUGmAAYA psi m5CUG from yeast tRNAPhe. The trinucleotide CAG was then joined to the 5' end of the resulting tridecanucleotide in a subsequent ligation. Both analogs bound to poly(U)-programmed 30 S subunits with affinities similar to that of the unmodified anticodon arm from yeast tRNAPhe. Irradiation of noncovalent complexes containing the photolabile analogs, poly(U) and 30 S ribosomal subunits with 300 nm light led to the covalent attachment of the anticodon arms to proteins S13 and S19. Further analysis revealed that S13 accounted for about 80%, and S19 for about 20%, of the cross-linked material. Labeling of these two proteins with 'zero-length' cross-linking probes provides useful information about the location and orientation of P site-bound tRNA on the ribosome and permits a test of recently proposed models of the three-dimensional structure of the 30 S subunit.  相似文献   
23.
24.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   
25.
A novel plasminogen-binding protein has been isolated from human plasma utilizing plasminogen-Sepharose affinity chromatography. This protein copurified with alpha 2 antiplasmin when the plasminogen affinity column was eluted with high concentrations of epsilon-aminocaproic acid (greater than 20 mM). Analysis by sodium dodecyl sulfate suggests this protein has an apparent Mr of 60,000. The amino-terminal amino acid sequence showed no similarity to other protein sequences. Based on the amino-terminal amino acid sequence, oligonucleotide probes were designed for polymerase chain reaction primers, and an approximately 1,800 base pair cDNA was isolated that encodes this Mr 60,000 protein. The deduced amino acid sequence reveals a primary translation product of 423 amino acids that is very similar to carboxypeptidase A and B and consists of a 22-amino acid signal peptide, a 92-amino acid activation peptide, and a 309-amino acid catalytic domain. This protein shows 44 and 40% similarity to rat procarboxypeptidase B and human mast cell procarboxypeptidase A, respectively. The residues critical for catalysis and zinc and substrate binding of carboxypeptidase A and B are conserved in the Mr 60,000 plasminogen-binding protein. The presence of aspartic acid at position 257 of the catalytic domain suggests that this protein is a basic carboxypeptidase. When activated by trypsin, it hydrolyzes carboxypeptidase B substrates, hippuryl-Arg and hippuryl-Lys, but not carboxypeptidase A substrates, and it is inhibited by the specific carboxypeptidase B inhibitor (DL-5-guanidinoethyl)mercaptosuccinic acid. We propose that the Mr 60,000 plasminogen-binding protein isolated here is a novel human plasma carboxypeptidase B and that it be designated pCPB.  相似文献   
26.
AR Boobis  MB Slade  C Stern  KM Lewis  DS Davies 《Life sciences》1981,29(14):1443-1448
Cytochrome P-448 (mol wt 55,000 Daltons) from rabbit liver was purified to a specific content of 16.6 nmol/mg. Mice were immunised with this preparation, their spleens removed and dissociated lymphocytes hybridised with myeloma cells. Four monoclonal antibodies against cytochrome P-448 were raised and partially characterised. All four antibodies interacted with cytochrome P-448 in intact microsomal fractions and selectively immunoadsorbed cytochrome P-448 from solubilised microsomal preparations. One of the antibodies inhibited benzo[a] pyrene hydroxylase activity in a reconstituted system, one had no effect on activity and two increased activity. The possible applications of such antibodies are discussed.  相似文献   
27.
A genome-wide association study was performed to identify genetic factors involved in susceptibility to psoriasis (PS) and psoriatic arthritis (PSA), inflammatory diseases of the skin and joints in humans. 223 PS cases (including 91 with PSA) were genotyped with 311,398 single nucleotide polymorphisms (SNPs), and results were compared with those from 519 Northern European controls. Replications were performed with an independent cohort of 577 PS cases and 737 controls from the U.S., and 576 PSA patients and 480 controls from the U.K.. Strongest associations were with the class I region of the major histocompatibility complex (MHC). The most highly associated SNP was rs10484554, which lies 34.7 kb upstream from HLA-C (P = 7.8×10−11, GWA scan; P = 1.8×10−30, replication; P = 1.8×10−39, combined; U.K. PSA: P = 6.9×10−11). However, rs2395029 encoding the G2V polymorphism within the class I gene HCP5 (combined P = 2.13×10−26 in U.S. cases) yielded the highest ORs with both PS and PSA (4.1 and 3.2 respectively). This variant is associated with low viral set point following HIV infection and its effect is independent of rs10484554. We replicated the previously reported association with interleukin 23 receptor and interleukin 12B (IL12B) polymorphisms in PS and PSA cohorts (IL23R: rs11209026, U.S. PS, P = 1.4×10−4; U.K. PSA: P = 8.0×10−4; IL12B:rs6887695, U.S. PS, P = 5×10−5 and U.K. PSA, P = 1.3×10−3) and detected an independent association in the IL23R region with a SNP 4 kb upstream from IL12RB2 (P = 0.001). Novel associations replicated in the U.S. PS cohort included the region harboring lipoma HMGIC fusion partner (LHFP) and conserved oligomeric golgi complex component 6 (COG6) genes on chromosome 13q13 (combined P = 2×10−6 for rs7993214; OR = 0.71), the late cornified envelope gene cluster (LCE) from the Epidermal Differentiation Complex (PSORS4) (combined P = 6.2×10−5 for rs6701216; OR 1.45) and a region of LD at 15q21 (combined P = 2.9×10−5 for rs3803369; OR = 1.43). This region is of interest because it harbors ubiquitin-specific protease-8 whose processed pseudogene lies upstream from HLA-C. This region of 15q21 also harbors the gene for SPPL2A (signal peptide peptidase like 2a) which activates tumor necrosis factor alpha by cleavage, triggering the expression of IL12 in human dendritic cells. We also identified a novel PSA (and potentially PS) locus on chromosome 4q27. This region harbors the interleukin 2 (IL2) and interleukin 21 (IL21) genes and was recently shown to be associated with four autoimmune diseases (Celiac disease, Type 1 diabetes, Grave''s disease and Rheumatoid Arthritis).  相似文献   
28.
The generally accepted metabolic concept that fructose 2,6-bisphosphate (Fru-2,6-P2) inhibits gluconeogenesis by directly inhibiting fructose 1,6-bisphosphatase is based entirely on in vitro observations. To establish whether gluconeogenesis is indeed inhibited by Fru-2,6-P2 in intact animals, a novel NMR method was developed using [U-13C]glucose and 2H2O as tracers. The method was used to estimate the sources of plasma glucose from gastric absorption of oral [U-13C]glucose, from gluconeogenesis, and from glycogen in 24-h fasted rats. Liver Fru-2,6-P2 increased approximately 10-fold shortly after the glucose load, reached a maximum at 60 min, and then dropped to base-line levels by 150 min. The gastric contribution to plasma glucose reached approximately 50% at 30 min after the glucose load and gradually decreased thereafter. Although the contribution of glycogen to plasma glucose was small, glucose formed from gluconeogenesis was substantial throughout the study period even when liver Fru-2,6-P2 was high. Liver glycogen repletion was also brisk throughout the study period, reaching approximately 30 micromol/g at 3 h. These data demonstrate that Fru-2,6-P2 does not inhibit gluconeogenesis significantly in vivo.  相似文献   
29.
Myocardial infarction (MI) is a common complex disease with a genetic component. While several single nucleotide polymorphisms (SNPs) have been reported to be associated with risk of MI, they do not fully explain the observed genetic component of MI. We have been investigating the association between MI and SNPs that are located in genes and have the potential to affect gene function or expression. We have previously published studies that tested about 12,000 SNPs for association with risk of MI, early-onset MI, or coronary stenosis. In the current study we tested 17,576 SNPs that could affect gene function or expression. In order to use genotyping resources efficiently, we staged the testing of these SNPs in three case-control studies of MI. In the first study (762 cases, 857 controls) we tested 17,576 SNPs and found 1,949 SNPs that were associated with MI (P<0.05). We tested these 1,949 SNPs in a second study (579 cases and 1159 controls) and found that 24 SNPs were associated with MI (1-sided P<0.05) and had the same risk alleles in the first and second study. Finally, we tested these 24 SNPs in a third study (475 cases and 619 controls) and found that 5 SNPs in 4 genes (ENO1, FXN (2 SNPs), HLA-DPB2, and LPA) were associated with MI in the third study (1-sided P<0.05), and had the same risk alleles in all three studies. The false discovery rate for this group of 5 SNPs was 0.23. Thus, we have identified 5 SNPs that merit further examination for their potential association with MI. One of these SNPs (in LPA), has been previously shown to be associated with risk of cardiovascular disease in other studies.  相似文献   
30.
Movement and sound generation by the toadfish swimbladder   总被引:4,自引:0,他引:4  
Although sound-producing (sonic) muscles attached to fish swimbladders are the fastest known vertebrate muscles, the functional requirement for such extreme speed has never been addressed. We measured movement of the swimbladder caused by sonic muscle stimulation in the oyster toadfish Opsanus tau and related it to major features of the sound waveform. The movement pattern is complex and produces sound inefficiently because the sides and bottom of the bladder move in opposite in and out directions, and both movement and sound decay rapidly. Sound amplitude is related to speed of swimbladder movement, and slow movements do not produce perceptible sound. Peak sound amplitude overlaps fundamental frequencies of the male's mating call because of muscle mechanics and not the natural frequency of the bladder. These findings suggest that rapid muscle speed evolved to generate sound from an inefficient highly damped system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号