首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   14篇
  2023年   2篇
  2022年   2篇
  2020年   2篇
  2017年   2篇
  2016年   2篇
  2015年   7篇
  2014年   7篇
  2013年   9篇
  2012年   9篇
  2011年   8篇
  2010年   2篇
  2009年   4篇
  2008年   8篇
  2007年   8篇
  2006年   4篇
  2005年   7篇
  2004年   11篇
  2003年   8篇
  2002年   3篇
  2001年   10篇
  2000年   6篇
  1999年   3篇
  1998年   6篇
  1997年   5篇
  1996年   5篇
  1992年   5篇
  1991年   6篇
  1990年   7篇
  1989年   6篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1984年   3篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1978年   2篇
  1975年   2篇
  1974年   5篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1960年   2篇
  1957年   1篇
  1955年   1篇
  1953年   2篇
  1952年   1篇
  1941年   1篇
  1940年   1篇
  1930年   1篇
排序方式: 共有215条查询结果,搜索用时 125 毫秒
11.
12.
InEscherichia coli, NADP+-specific isocitrate dehydrogenase (EC 1.1.1.42) may undergo a phosphorylation catalyzed by a cAMP-independent protein kinase, with a concomitant decrease in catalytic activity. In this report, we describe the purification and amino acid sequence of a32P-labeled peptide obtained from in vivo32P-labeled isocitrate dehydrogenase. The32P-labeled peptide was isolated from a tryptic digest and found to contain seven amino acids, including a single serine residue. Following automated Edman degradation and reversephase high-pressure liquid chromatography of the phenylthiohydantoin-amino acids, the sequence of this peptide was established to be-Ser(P)-Leu-Asn-Val-Ala-Leu-Arg.  相似文献   
13.
A novel plasminogen-binding protein has been isolated from human plasma utilizing plasminogen-Sepharose affinity chromatography. This protein copurified with alpha 2 antiplasmin when the plasminogen affinity column was eluted with high concentrations of epsilon-aminocaproic acid (greater than 20 mM). Analysis by sodium dodecyl sulfate suggests this protein has an apparent Mr of 60,000. The amino-terminal amino acid sequence showed no similarity to other protein sequences. Based on the amino-terminal amino acid sequence, oligonucleotide probes were designed for polymerase chain reaction primers, and an approximately 1,800 base pair cDNA was isolated that encodes this Mr 60,000 protein. The deduced amino acid sequence reveals a primary translation product of 423 amino acids that is very similar to carboxypeptidase A and B and consists of a 22-amino acid signal peptide, a 92-amino acid activation peptide, and a 309-amino acid catalytic domain. This protein shows 44 and 40% similarity to rat procarboxypeptidase B and human mast cell procarboxypeptidase A, respectively. The residues critical for catalysis and zinc and substrate binding of carboxypeptidase A and B are conserved in the Mr 60,000 plasminogen-binding protein. The presence of aspartic acid at position 257 of the catalytic domain suggests that this protein is a basic carboxypeptidase. When activated by trypsin, it hydrolyzes carboxypeptidase B substrates, hippuryl-Arg and hippuryl-Lys, but not carboxypeptidase A substrates, and it is inhibited by the specific carboxypeptidase B inhibitor (DL-5-guanidinoethyl)mercaptosuccinic acid. We propose that the Mr 60,000 plasminogen-binding protein isolated here is a novel human plasma carboxypeptidase B and that it be designated pCPB.  相似文献   
14.
To study the mechanisms of discrimination between various forms of vitamin E, four normal subjects, one patient with lipoprotein lipase deficiency, and three patients with abnormal apolipoprotein B-100 production were given an oral dose containing three tocopherols labeled with differing amounts of deuterium (2R,4'R,8'R-alpha-(5,7-(C2H3)2)tocopheryl acetate (d6-RRR-alpha-tocopheryl acetate), 2S,4'R,8'R-alpha-5-(C2H3)tocopheryl acetate (d3-SRR-alpha-tocopheryl acetate), and 2R,4'R,8'R-gamma-(3,4-2H)tocopherol (d2-RRR-gamma-tocopherol). The tocopherol contents of plasma, red cells, and lipoproteins were measured up to 76 h after the dose. In normal subjects all three tocopherols were absorbed and secreted in chylomicrons with equal efficiencies. Both d2-gamma- and d3-SRR-alpha-tocopherols peaked at similar concentrations in the other lipoprotein fractions, then decreased similarly, but 2-4 times more rapidly than did d6-RRR-alpha-tocopherol. A lipoprotein lipase-deficient patient and a patient with prolonged production of chylomicrons with absent apolipoprotein B-100 also demonstrated the lack of discrimination between tocopherols during absorption. Despite abnormal apolipoprotein B-100 production in two patients, the "VLDL" was preferentially enriched in d6-RRR-alpha-tocopherol. Our results show that there is no discrimination between the three tocopherols during absorption and secretion in chylomicrons, but subsequently there is a preferential enrichment of very low density lipoprotein (VLDL) with RRR-alpha-tocopherol. Catabolism of this VLDL results in the maintenance of plasma RRR-alpha-tocopherol concentrations.  相似文献   
15.
Two analogs of the anticodon arm of yeast tRNAPhe (residues 28-43), in which G43 was replaced by the photoreactive nucleosides 2-azidoadenosine and 8-azidoadenosine, have been used to create 'zero-length' cross-links to ribosomal components at the peptidyl-tRNA binding site (P site) of 30 S subunits from the Escherichia coli ribosome. To prepare the analogs, 2-azidoadenosine and 8-azidoadenosine bisphosphates were first ligated to the 3' end of the anticodon-containing dodecanucleotide ACmUGmAAYA psi m5CUG from yeast tRNAPhe. The trinucleotide CAG was then joined to the 5' end of the resulting tridecanucleotide in a subsequent ligation. Both analogs bound to poly(U)-programmed 30 S subunits with affinities similar to that of the unmodified anticodon arm from yeast tRNAPhe. Irradiation of noncovalent complexes containing the photolabile analogs, poly(U) and 30 S ribosomal subunits with 300 nm light led to the covalent attachment of the anticodon arms to proteins S13 and S19. Further analysis revealed that S13 accounted for about 80%, and S19 for about 20%, of the cross-linked material. Labeling of these two proteins with 'zero-length' cross-linking probes provides useful information about the location and orientation of P site-bound tRNA on the ribosome and permits a test of recently proposed models of the three-dimensional structure of the 30 S subunit.  相似文献   
16.
AR Boobis  MB Slade  C Stern  KM Lewis  DS Davies 《Life sciences》1981,29(14):1443-1448
Cytochrome P-448 (mol wt 55,000 Daltons) from rabbit liver was purified to a specific content of 16.6 nmol/mg. Mice were immunised with this preparation, their spleens removed and dissociated lymphocytes hybridised with myeloma cells. Four monoclonal antibodies against cytochrome P-448 were raised and partially characterised. All four antibodies interacted with cytochrome P-448 in intact microsomal fractions and selectively immunoadsorbed cytochrome P-448 from solubilised microsomal preparations. One of the antibodies inhibited benzo[a] pyrene hydroxylase activity in a reconstituted system, one had no effect on activity and two increased activity. The possible applications of such antibodies are discussed.  相似文献   
17.
A comparison was made of the S-070 Pediatric Bubble Oxygenator, which was unreliable above flow rates of approximately 1.5 L/min, with a modified S-070A, which proved to be extremely efficient to flow rates of 2.5 L/min.  相似文献   
18.
Studies of glycerol metabolism in the heart have largely emphasized its role in triglyceride synthesis. However, glycerol may also be oxidized in the citric acid cycle, and glycogen synthesis from glycerol has been reported in the nonmammalian myocardium. The intent of this study was to test the hypothesis that glycerol may be metabolized to glycogen in mammalian heart. Isolated rat hearts were supplied with a mixture of substrates including glucose, lactate, pyruvate, octanoate, [U-13C3]glycerol, and 2H2O to probe various metabolic pathways including glycerol oxidation, glycolysis, the pentose phosphate pathway, and carbon sources of stored glycogen. NMR analysis confirmed that glycogen production from the level of the citric acid cycle did not occur and that the glycerol contribution to oxidation in the citric acid cycle was negligible in the presence of alternative substrates. Quite unexpectedly, 13C from [U-13C3]glycerol appeared in glycogen in carbon positions 4–6 of glucosyl units but none in positions 1–3. The extent of [4,5,6-13C3]glucosyl unit enrichment in glycogen was enhanced by insulin but decreased by H2O2. Given that triose phosphate isomerase is generally assumed to fully equilibrate carbon tracers in the triose pool, the marked 13C asymmetry in glycogen can only be attributed to conversion of [U-13C3]glycerol to [U-13C3]dihydroxyacetone phosphate and [U-13C3]glyceraldehyde 3-phosphate followed by rearrangements in the nonoxidative branch of the pentose phosphate pathway involving transaldolase that places this 13C-enriched 3-carbon unit only in the bottom half of hexose phosphate molecules contributing to glycogen.  相似文献   
19.
Autophagy is an important cellular process that controls cells in a normal homeostatic state by recycling nutrients to maintain cellular energy levels for cell survival via the turnover of proteins and damaged organelles. However, persistent activation of autophagy can lead to excessive depletion of cellular organelles and essential proteins, leading to caspase-independent autophagic cell death. As such, inducing cell death through this autophagic mechanism could be an alternative approach to the treatment of cancers. Recently, we have identified a novel autophagic inducer, saikosaponin-d (Ssd), from a medicinal plant that induces autophagy in various types of cancer cells through the formation of autophagosomes as measured by GFP-LC3 puncta formation. By computational virtual docking analysis, biochemical assays and advanced live-cell imaging techniques, Ssd was shown to increase cytosolic calcium level via direct inhibition of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase pump, leading to autophagy induction through the activation of the Ca2+/calmodulin-dependent kinase kinase–AMP-activated protein kinase–mammalian target of rapamycin pathway. In addition, Ssd treatment causes the disruption of calcium homeostasis, which induces endoplasmic reticulum stress as well as the unfolded protein responses pathway. Ssd also proved to be a potent cytotoxic agent in apoptosis-defective or apoptosis-resistant mouse embryonic fibroblast cells, which either lack caspases 3, 7 or 8 or had the Bax-Bak double knockout. These results provide a detailed understanding of the mechanism of action of Ssd, as a novel autophagic inducer, which has the potential of being developed into an anti-cancer agent for targeting apoptosis-resistant cancer cells.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号