首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   10篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   6篇
  2014年   4篇
  2013年   13篇
  2012年   10篇
  2011年   9篇
  2010年   2篇
  2009年   2篇
  2008年   11篇
  2007年   7篇
  2006年   14篇
  2005年   6篇
  2004年   9篇
  2003年   7篇
  2002年   4篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1981年   2篇
  1980年   2篇
  1979年   4篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1972年   2篇
  1969年   1篇
排序方式: 共有138条查询结果,搜索用时 31 毫秒
11.
12.
Erythropoietin receptor (EpoR) activation is crucial for mature red blood cell production. The murine EpoR can also be activated by the envelope protein of the polycythemic (P) spleen focus forming virus (SFFV), gp55-P. Due to differences in the TM sequence, gp55 of the anemic (A) strain SFFV, gp55-A, cannot efficiently activate the EpoR. Using antibody-mediated immunofluorescence co-patching, we show that the majority of EpoR forms hetero-oligomers at the cell surface with gp55-P and, surprisingly, with gp55-A. The EpoR TM domain is targeted by gp55-P and -A, as only chimeric receptors containing EpoR TM sequences oligomerized with gp55 proteins. Both gp55-P and gp55-A are homodimers on the cell surface, as shown by co-patching. However, when the homomeric interactions of the isolated TM domains were assayed by TOXCAT bacterial reporter system, only the TM sequence of gp55-P was dimerized. Thus, homo-oligomerization of gp55 proteins is insufficient for full EpoR activation, and a correct conformation of the dimer in the TM region is required. This is supported by the failure of gp55-A-->P, a mutant protein whose TM domain can homo-oligomerize, to fully activate EpoR. As unliganded EpoR forms TM-dependent but inactive homodimers, we propose that the EpoR can be activated to different extents by homodimeric gp55 proteins, depending on the conformation of the gp55 protein dimer in the TM region.  相似文献   
13.
14.
Plant biological warfare: thorns inject pathogenic bacteria into herbivores   总被引:2,自引:0,他引:2  
Thorns, spines and prickles are among the rich arsenal of antiherbivore defence mechanisms that plants have evolved. Many of these thorns are aposematic, that is, marked by various types of warning coloration. This coloration was recently proposed to deter large herbivores. Yet, the mechanical defence provided by thorns against large herbivores might be only the tip of the iceberg in a much more complicated story. Here we present evidence that thorns harbour an array of pathogenic bacteria that are much more dangerous to herbivores than the painful mechanical wounding by the thorns. Pathogenic bacteria like Clostridium perfringens, the causative agent of the life-threatening gas gangrene, and others, were isolated and identified from date palm (with green-yellow-black aposematic spines) and common hawthorn (with red aposematic thorns). These thorn-inhabiting bacteria have a considerable potential role in antiherbivory, and may have uniquely contributed to the common evolution of aposematism (warning coloration) in thorny plants.  相似文献   
15.
Vibrio cholerae is a waterborne bacterium native to the aquatic environment. There are over 200 known serogroups yet only two cause cholera pandemics in humans. Direct contact of human sewage with drinking water, sea-born currents and marine transportation, represent modes of dissemination of the bacteria and thus the disease. The simultaneous cholera outbreaks that occur sometimes in distant localities within continental landmasses are puzzling. Here we present evidence that flying, non-biting midges (Diptera; Chironomidae), collected in the air, carry viable non-O1 non-O139 serogroups of V. cholerae. The association of V. cholerae with chironomid egg masses, which serve as a V. cholerae reservoir, was further confirmed. In simulated field experiments, we recorded the transfer of environmental V. cholerae by adult midges from the aquatic environment into bacteria-free water-pools. In laboratory experiments, flying adult midges that emerged from V. cholerae (O1 or O139) contaminated water transferred the green fluorescent protein (GFP)-tagged pathogenic bacteria from one laboratory flasks to another. Our findings show that aerial transfer by flying chironomids may play a role in the dissemination of V. cholerae in nature.  相似文献   
16.
17.
It is well documented that muscle contraction results from cyclic rotations of actin-bound myosin cross-bridges. The role of actin is hypothesized to be limited to accelerating phosphate release from myosin and to serving as a rigid substrate for cross-bridge rotations. To test this hypothesis, we have measured actin rotations during contraction of a skeletal muscle. Actin filaments of rabbit psoas fiber were labeled with rhodamine-phalloidin. Muscle contraction was induced by a pulse of ATP photogenerated from caged precursor. ATP induced a single turnover of cross-bridges. The rotations were measured by anisotropy of fluorescence originating from a small volume defined by a narrow aperture of a confocal microscope. The anisotropy of phalloidin-actin changed rapidly at first and was followed by a slow relaxation to a steady-state value. The kinetics of orientation changes of actin and myosin were the same. Extracting myosin abolished anisotropy changes. To test whether the rotation of actin was imposed by cross-bridges or whether it reflected hydrolytic activity of actin itself, we labeled actin with fluorescent ADP. The time-course of anisotropy change of fluorescent nucleotide was similar to that of phalloidin-actin. These results suggest that orientation changes of actin are caused by dissociation and rebinding of myosin cross-bridges, and that during contraction, nucleotide does not dissociate from actin.  相似文献   
18.
Enlarged or giant mitochondria have often been documented in aged tissues although their role and underlying mechanism remain unclear. We report here how highly elongated giant mitochondria are formed in and related to the senescent arrest. The mitochondrial morphology was progressively changed to a highly elongated form during deferoxamine (DFO)-induced senescent arrest of Chang cells, accompanied by increase of intracellular ROS level and decrease of mtDNA content. Interestingly, under exposure to subcytotoxic doses of H2O2 (200 microM), about 65% of Chang cells harbored elongated mitochondria with senescent phenotypes whereas ethidium bromide (EtBr) (50 ng/ml) only reformed the cristae structure. Elongated giant mitochondria were also observed in TGF beta1- or H2O2-induced senescent Mv1Lu cells and in old human diploid fibroblasts (HDFs). In all senescent progresses employed in this study Fis1 protein, a mitochondrial fission modulator, was commonly downexpressed. Overexpression of YFP-Fis1 reversed both mitochondrial elongation and appearance of senescent phenotypes induced by DFO, implying its critical involvement in the arrest. Finally, we found that direct induction of mitochondrial elongation by blocking mitochondrial fission process with Fis1-DeltaTM or Drp1-K38A was sufficient to develop senescent phenotypes with increased ROS production. These data suggest that mitochondrial elongation may play an important role as a mediator in stress-induced premature senescence.  相似文献   
19.
20.
Eukaryotic cells contain numerous copies of the mitochondrial genome (from 50 to 100 copies in the budding yeast to some thousands in humans) that localize to numerous intramitochondrial nucleoprotein complexes called nucleoids. The transmission of mitochondrial DNA differs significantly from that of nuclear genomes and depends on the number, molecular composition and dynamic properties of nucleoids and on the organization and dynamics of the mitochondrial compartment. While the localization, dynamics and protein composition of mitochondrial DNA nucleoids begin to be described, we are far from knowing all mechanisms and molecules mediating and/or regulating these processes. Here, we review our current knowledge on vertebrate nucleoids and discuss similarities and differences to nucleoids of other eukaryots.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号