首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1565篇
  免费   181篇
  2022年   13篇
  2021年   18篇
  2018年   19篇
  2017年   13篇
  2016年   20篇
  2015年   32篇
  2014年   53篇
  2013年   62篇
  2012年   73篇
  2011年   66篇
  2010年   52篇
  2009年   32篇
  2008年   68篇
  2007年   39篇
  2006年   57篇
  2005年   50篇
  2004年   51篇
  2003年   48篇
  2002年   35篇
  2001年   43篇
  2000年   49篇
  1999年   52篇
  1998年   24篇
  1997年   17篇
  1996年   22篇
  1995年   22篇
  1994年   29篇
  1993年   26篇
  1992年   40篇
  1991年   37篇
  1990年   36篇
  1989年   31篇
  1988年   39篇
  1987年   40篇
  1986年   23篇
  1985年   26篇
  1984年   26篇
  1983年   24篇
  1982年   20篇
  1981年   17篇
  1980年   17篇
  1979年   19篇
  1978年   19篇
  1977年   15篇
  1976年   21篇
  1975年   16篇
  1974年   18篇
  1972年   13篇
  1970年   13篇
  1967年   12篇
排序方式: 共有1746条查询结果,搜索用时 56 毫秒
991.
Rheumatoid arthritis is a chronic inflammatory disease affecting approximately 1% of the population and is characterized by cartilage and bone destruction ultimately leading to loss of joint function. Early detection and intervention of disease provides the best hope for successful treatment and preservation of joint mobility and function. Reliable and non-invasive techniques that accurately measure arthritic disease onset and progression are lacking. We recently developed a novel agent, SapC-DOPS, which is composed of the membrane-associated lysosomal protein saposin C (SapC) incorporated into 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) lipid nanovesicles. SapC-DOPS has a high fusogenic affinity for phosphatidylserine-enriched microdomains on surfaces of target cell membranes. Incorporation of a far-red fluorophore, CellVue Maroon (CVM), into the nanovesicles allows for in vivo non-invasive visualization of the agent in targeted tissue. Given that phosphatidylserine is present only on the inner leaflet of healthy plasma membranes but is "flipped" to the outer leaflet upon cell damage, we hypothesized that SapC-DOPS would target tissue damage associated with inflammatory arthritis due to local surface-exposure of phosphatidylserine. Optical imaging with SapC-DOPS-CVM in two distinct models of arthritis, serum-transfer arthritis (e.g., K/BxN) and collagen-induced arthritis (CIA) revealed robust SapC-DOPS-CVM specific localization to arthritic paws and joints in live animals. Importantly, intensity of localized fluorescent signal correlated with macroscopic arthritic disease severity and increased with disease progression. Flow cytometry of cells extracted from arthritic joints demonstrated that SapC-DOPS-CVM localized to an average of 7-8% of total joint cells and primarily to CD11b+Gr-1+ cells. Results from the current studies strongly support the application of SapC-DOPS-CVM for advanced clinical and research applications including: detecting early arthritis onset, assessing disease progression real-time in live subjects, and providing novel information regarding cell types that may mediate arthritis progression within joints.  相似文献   
992.
We tested the hypothesis that meiotic competence of dog oocytes is tightly linked with donor follicle size and energy metabolism. Oocytes were recovered from small (<1 mm diameter, n = 327), medium (1–<2 mm, n = 292) or large (≥2 mm, n = 102) follicles, cultured for 0, 24, or 48 hr, and then assessed for glycolysis, glucose oxidation, pyruvate uptake, glutamine oxidation, and nuclear status. More oocytes (P < 0.05) from large follicles (37%) reached the metaphase‐II (MII) stage than from the small group (11%), with the medium‐sized class being intermediate (18%; P > 0.05). Glycolytic rate increased (P < 0.05) as oocytes progressed from the germinal vesicle (GV) to MII stage. After 48 hr of culture, oocytes completing nuclear maturation had higher (P < 0.05) glycolytic rates than those arrested at earlier stages. GV oocytes recovered from large follicle oocytes had higher (P < 0.05) metabolism than those from smaller counterparts at culture onset. MII oocytes from large follicles oxidized more (P < 0.05) glutamine than the same stage gametes recovered from smaller counterparts. In summary, larger‐sized dog follicles contain a more metabolically active oocyte with a greater chance of achieving nuclear maturation in vitro. These findings demonstrate a significant role for energy metabolism in promoting dog oocyte maturation, information that will be useful for improving culture systems for rescuing intraovarian genetic material. Mol. Reprod. Dev. 79: 186–196, 2012. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
993.
1. The effects of strychnine on the voltage-dependent Ca2+ current (ICa) were studied in physically isolated Aplysia neurons and enzymatically dissociated frog sensory neurons of the dorsal root ganglion. Neurons were studied under the internal perfusion and the voltage clamp condition. 2. Strychnine decreased the ICa with threshold concentrations for effect at 1 to 10 microM. The depression of ICa increased with strychnine dose without effects on the current-voltage relation of ICa. The effects of low concentrations of strychnine were reversible, but recovery was incomplete at higher concentrations. The potency of strychnine was about 10 times less than that of diltiazem, an organic Ca2+ antagonist. At 100 microM the ICa of Aplysia neurons was reduced to about half of the control. This concentration of strychnine also reduced the peak amplitude of ICa of frog sensory neurons. 3. These results indicate that, in addition to its actions on transmitter responses and on Na+ and K+ currents, strychnine has effects on ICa that have not previously been appreciated.  相似文献   
994.
The metabolism of polyphosphoinositides has been shown to be an important factor in controlling the proliferation of Saccharomyces cerevisiae. The monophosphate form of phosphatidylinositol has been assumed to be phosphatidylinositol 4-phosphate (PI-4-P). Recent evidence from our laboratory has established that a phosphatidylinositol (PI) kinase, which phosphorylates the D-3 position of the inositol ring (PI 3-kinase), is associated with many activated protein-tyrosine kinases and may play an important role in the signaling of cell proliferation (Auger, K. R., Serunian, L. A., Soltoff, S. P., Libby, P., and Cantley, L. C. (1989) Cell 57, 167-175). To determine the evolutionary conservation of this enzymatic activity, we investigated its presence in yeast. In vitro PI kinase assays of yeast cell homogenates demonstrated that PI 3-kinase activity was present. Preliminary biochemical characterization of the activity suggested that it was quite different from the mammalian enzyme yet catalyzed the same reaction, i.e. phosphorylating the D-3 hydroxyl position of the inositol ring of phosphatidyl-myo-inositol. [3H]Inositol labeling of intact yeast cells with the subsequent extraction, deacylation, and high performance liquid chromatography analysis of the lipids demonstrated that PI-3-P was as abundant as the PI-4-P isomer. The conservation of the enzymatic activity from yeast to man suggests that it has an important functional role in the cell cycle.  相似文献   
995.
A common gene regulates pigmentation pattern in diverse plant species.   总被引:31,自引:0,他引:31  
J Goodrich  R Carpenter  E S Coen 《Cell》1992,68(5):955-964
  相似文献   
996.
997.
The metabolism of the receptor for epidermal growth factor (EGF) in A-431 cells has been measured by labeling the receptor in vivo with radioactive amino acid precursors and then determining, by immunoprecipitation with specific anti-EGF receptor antisera, the rate of degradation of the receptor when the cells are placed in a nonradioactive medium. The rate of EGF receptor degradation (t1/2 = 20 hr) was faster than the rate of degradation of total cell protein (t1/2 = 52 hr). When EGF was added at the beginning of the chase, the half-life of prelabeled receptor decreased to 8.9 hr. This decrease was specific, as the level of total cellular protein and another plasma membrane protein, the transferrin receptor, were relatively unaffected by EGF. The carbohydrate portion of the receptor is degraded, in the presence or absence of EGF, at approximately the same rate as the protein moiety. The amount of EGF receptor protein in A-431 cells has been quantitated by radiolabeling total cellular protein and quantitating the immunoprecipitable receptor. The EGF receptor constitutes approximately 0.15% of the total cell protein in A-431 cells. These cells, therefore, have approximately 30 times more EGF receptor protein than fibroblasts. The EGF receptor constitutes an even higher proportion of 3H-glucosamine- or 3H-mannose-labeled macromolecules in A-431 cells, 1.5% or 5.2%, respectively. The EGF receptor from A-431 cells can easily be identified by submitting carbohydrate-labeled, solubilized cells to electrophoresis as described by Laemmli (1970).  相似文献   
998.
999.
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号