首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   19篇
  230篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   9篇
  2020年   1篇
  2019年   7篇
  2018年   9篇
  2017年   11篇
  2016年   5篇
  2015年   11篇
  2014年   16篇
  2013年   8篇
  2012年   20篇
  2011年   16篇
  2010年   11篇
  2009年   12篇
  2008年   20篇
  2007年   15篇
  2006年   12篇
  2005年   7篇
  2004年   6篇
  2003年   8篇
  2002年   13篇
  1999年   1篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1982年   1篇
  1968年   1篇
排序方式: 共有230条查询结果,搜索用时 15 毫秒
41.
The interferon-inducible transmembrane (IFITM) family of proteins has been shown to restrict a broad range of viruses in vitro and in vivo by halting progress through the late endosomal pathway. Further, single nucleotide polymorphisms (SNPs) in its sequence have been linked with risk of developing severe influenza virus infections in humans. The number of viruses restricted by this host protein has continued to grow since it was first demonstrated as playing an antiviral role; all of which enter cells via the endosomal pathway. We therefore sought to test the limits of antimicrobial restriction by Ifitm3 using a knockout mouse model. We showed that Ifitm3 does not impact on the restriction or pathogenesis of bacterial (Salmonella typhimurium, Citrobacter rodentium, Mycobacterium tuberculosis) or protozoan (Plasmodium berghei) pathogens, despite in vitro evidence. However, Ifitm3 is capable of restricting respiratory syncytial virus (RSV) in vivo either through directly restricting RSV cell infection, or by exerting a previously uncharacterised function controlling disease pathogenesis. This represents the first demonstration of a virus that enters directly through the plasma membrane, without the need for the endosomal pathway, being restricted by the IFITM family; therefore further defining the role of these antiviral proteins.  相似文献   
42.
43.
Whereas remarkable advances have uncovered mechanisms that drive nervous system assembly, the processes responsible for the lifelong maintenance of nervous system architecture remain poorly understood. Subsequent to its establishment during embryogenesis, neuronal architecture is maintained throughout life in the face of the animal’s growth, maturation processes, the addition of new neurons, body movements, and aging. The Caenorhabditis elegans protein SAX-7, homologous to the vertebrate L1 protein family of neural adhesion molecules, is required for maintaining the organization of neuronal ganglia and fascicles after their successful initial embryonic development. To dissect the function of sax-7 in neuronal maintenance, we generated a null allele and sax-7S-isoform-specific alleles. We find that the null sax-7(qv30) is, in some contexts, more severe than previously described mutant alleles and that the loss of sax-7S largely phenocopies the null, consistent with sax-7S being the key isoform in neuronal maintenance. Using a sfGFP::SAX-7S knock-in, we observe sax-7S to be predominantly expressed across the nervous system, from embryogenesis to adulthood. Yet, its role in maintaining neuronal organization is ensured by postdevelopmentally acting SAX-7S, as larval transgenic sax-7S(+) expression alone is sufficient to profoundly rescue the null mutants’ neuronal maintenance defects. Moreover, the majority of the protein SAX-7 appears to be cleaved, and we show that these cleaved SAX-7S fragments together, not individually, can fully support neuronal maintenance. These findings contribute to our understanding of the role of the conserved protein SAX-7/L1CAM in long-term neuronal maintenance and may help decipher processes that go awry in some neurodegenerative conditions.  相似文献   
44.
Species can respond to environmental pressures through genetic and epigenetic changes and through phenotypic plasticity, but few studies have evaluated the relationships between genetic differentiation and phenotypic plasticity of plant species along changing environmental conditions throughout wide latitudinal ranges. We studied inter‐ and intrapopulation genetic diversity (using simple sequence repeats and chloroplast DNA sequencing) and inter‐ and intrapopulation phenotypic variability of 33 plant traits (using field and common‐garden measurements) for five populations of the invasive cordgrass Spartina densiflora Brongn. along the Pacific coast of North America from San Francisco Bay to Vancouver Island. Studied populations showed very low genetic diversity, high levels of phenotypic variability when growing in contrasted environments and high intrapopulation phenotypic variability for many plant traits. This intrapopulation phenotypic variability was especially high, irrespective of environmental conditions, for those traits showing also high phenotypic plasticity. Within‐population variation represented 84% of the total genetic variation coinciding with certain individual plants keeping consistent responses for three plant traits (chlorophyll b and carotenoid contents, and dead shoot biomass) in the field and in common‐garden conditions. These populations have most likely undergone genetic bottleneck since their introduction from South America; multiple introductions are unknown but possible as the population from Vancouver Island was the most recent and one of the most genetically diverse. S. densiflora appears as a species that would not be very affected itself by climate change and sea‐level rise as it can disperse, establish, and acclimate to contrasted environments along wide latitudinal ranges.  相似文献   
45.
46.
Many fields of science—including behavioral ecology—currently experience a heated debate about the extent to which publication bias against null findings results in a misrepresentative scientific literature. Here, we show a case of an extreme mismatch between strong positive support for an effect in the literature and a failure to detect this effect across multiple attempts at replication. For decades, researchers working with birds have individually marked their study species with colored leg bands. For the zebra finch Taeniopygia guttata, a model organism in behavioral ecology, many studies over the past 35 years have reported effects of bands of certain colors on male or female attractiveness and further on behavior, physiology, life history, and fitness. Only eight of 39 publications presented exclusively null findings. Here, we analyze the results of eight experiments in which we quantified the fitness of a total of 730 color‐banded individuals from four captive populations (two domesticated and two recently wild derived). This sample size exceeds the combined sample size of all 23 publications that clearly support the “color‐band effect” hypothesis. We found that band color explains no variance in either male or female fitness. We also found no heterogeneity in color‐band effects, arguing against both context and population specificity. Analysis of unpublished data from three other laboratories strengthens the generality of our null finding. Finally, a meta‐analysis of previously published results is indicative of selective reporting and suggests that the effect size approaches zero when sample size is large. We argue that our field—and science in general—would benefit from more effective means to counter confirmation bias and publication bias.  相似文献   
47.
48.
Wilson GS  Ammam M 《The FEBS journal》2007,274(21):5452-5461
Detailed understanding of the dynamics of living systems requires a means to monitor, in real time, changes in the levels of key components in response to specific stimuli. Applications involving cultured cells, tissue slices and implantation in living systems are discussed.  相似文献   
49.
Palladin is an actin-associated protein that has been suggested to play critical roles in establishing cell morphology and maintaining cytoskeletal organization in a wide variety of cell types. Palladin has been shown previously to bind directly to three different actin-binding proteins vasodilator-stimulated phosphoprotein (VASP), alpha-actinin and ezrin, suggesting that it functions as an organizing unit that recruits actin-regulatory proteins to specific subcellular sites. Palladin contains sequences resembling a motif known to bind profilin. Here, we demonstrate that palladin is a binding partner for profilin, interacting with profilin via a poly proline-containing sequence in the amino-terminal half of palladin. Double-label immunofluorescence staining shows that palladin and profilin partially colocalize in actin-rich structures in cultured astrocytes. Our results suggest that palladin may play an important role in recruiting profilin to sites of actin dynamics.  相似文献   
50.
There is growing evidence that vascular arginase plays a role in pathophysiology of vascular diseases. We recently reported high arginase activity/expression in young adult hypertensive spontaneously hypertensive rats (SHR). The aim of the present study was to characterize the time course of arginase pathway abnormalities in SHR and to explore the contributing role of hemodynamics and inflammation. Experiments were conducted on 5, 10, 19 and 26-week-old SHR and their age-matched control Wistar Kyoto (WKY) rats. Arginase activity as well as expression of arginase I, arginase II, endothelial and inducible NOS were determined in aortic tissue extracts. Levels of L-arginine, NO catabolites and IL-6 (a marker of inflammation) were measured in plasma. Arginase activity/expression was also measured in 10-week-old SHR previously treated with hydralazine (20 mg/kg/day, per os, for 5 weeks). As compared to WKY, SHR exhibited high vascular arginase I and II expression from prehypertensive to established stages of hypertension. However, a mismatch between expression and activity was observed at the prehypertensive stage. Arginase expression was not related either to plasma IL-6 levels or to expression of NOS. Prevention of hypertension by hydralazine significantly blunted arginase upregulation and restored arginase activity. Importantly, arginase activity and blood pressure (BP) correlated in SHR. In conclusion, our results demonstrate that arginase upregulation precedes blood pressure rising and identify elevated blood pressure as a contributing factor of arginase dysregulation in genetic hypertension. They also demonstrated a close relationship between arginase activity and BP, thus making arginase a promising target for antihypertensive therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号