首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   23篇
  国内免费   1篇
  2023年   2篇
  2022年   2篇
  2021年   9篇
  2020年   3篇
  2019年   14篇
  2018年   17篇
  2017年   8篇
  2016年   5篇
  2015年   4篇
  2014年   8篇
  2013年   14篇
  2012年   8篇
  2011年   5篇
  2010年   2篇
  2009年   2篇
  2008年   6篇
  2007年   2篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2000年   4篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1966年   1篇
排序方式: 共有132条查询结果,搜索用时 15 毫秒
81.
Manganese-oxo porphyrins have been well studied as biomimetic models of cytochromes P450 and are known to be able to catalyze substrate hydroxylation reactions. Recent experimental studies [J.Y. Lee, Y.-M. Lee, H. Kotani, W. Nam, S. Fukuzumi, Chem. Commun. (2009) 704] showed that Mn(V)-oxo porphyrins react rapidly with 10-methyl-9,10-dihydroacridine (AcrH2) via a proton-coupled-electron-transfer followed by an electron transfer. In this work, we present a computational study on the reactivity patterns of Mn(V)-oxo and Mn(IV)-oxo with respect to AcrH2. This study shows that although both oxidants are capable of hydroxylating AcrH2, the MnV-oxo species is the more active oxidant. We have generalized these observations with thermodynamic cycles that explain the reaction mechanisms and electron transfer processes. For the MnV-oxo mechanism the reactions proceed with a fast spin state crossing from the ground state singlet to the triplet spin state prior to a hydrogen atom transfer followed by another electron transfer. The present results are fully consistent with previous studies on iron-oxo porphyrins and manganese-oxo porphyrins and shows that the interplay of low lying singlet and triplet spin state surfaces influences the reaction mechanisms and kinetics.  相似文献   
82.
BackgroundThe purpose of this study was to characterize pre-treatment non-contrast computed tomography (CT) and 18F-fluorodeoxyglucose positron emission tomography (PET) based radiomics signatures predictive of pathological response and clinical outcomes in rectal cancer patients treated with neoadjuvant chemoradiotherapy (NACR T).Materials and methodsAn exploratory analysis was performed using pre-treatment non-contrast CT and PET imaging dataset. The association of tumor regression grade (TRG) and neoadjuvant rectal (NAR) score with pre-treatment CT and PET features was assessed using machine learning algorithms. Three separate predictive models were built for composite features from CT + PET.ResultsThe patterns of pathological response were TRG 0 (n = 13; 19.7%), 1 (n = 34; 51.5%), 2 (n = 16; 24.2%), and 3 (n = 3; 4.5%). There were 20 (30.3%) patients with low, 22 (33.3%) with intermediate and 24 (36.4%) with high NAR scores. Three separate predictive models were built for composite features from CT + PET and analyzed separately for clinical endpoints. Composite features with α = 0.2 resulted in the best predictive power using logistic regression. For pathological response prediction, the signature resulted in 88.1% accuracy in predicting TRG 0 vs. TRG 1–3; 91% accuracy in predicting TRG 0–1 vs. TRG 2–3. For the surrogate of DFS and OS, it resulted in 67.7% accuracy in predicting low vs. intermediate vs. high NAR scores.ConclusionThe pre-treatment composite radiomics signatures were highly predictive of pathological response in rectal cancer treated with NACR T. A larger cohort is warranted for further validation.  相似文献   
83.
Recombinant Escherichia coli displaying organophosphorus hydrolase (OPH) was used to overcome the diffusion barrier limitation of organophosphorus pesticides. A new anchor system derived from the N-terminal domain of ice-nucleation protein from Pseudomonas syringae InaV (InaV-N) was used to display OPH onto the surface. The designed sequence was cloned in the vector pET-28a(+) and then was expressed in E. coli. Tracing of the expression location of the recombinant protein using SDS-PAGE showed the presentation of OPH by InaV-N on the outer membrane, and the ability of recombinant E. coli to utilize diazinon as the sole source of energy, without growth inhibition, indicated its significant activity. The location of OPH was detected by comparing the activity of the outer membrane fraction with the inner membrane and cytoplasm fractions. Studies revealed that recombinant E. coli can degrade 50% of 2 mM chlorpyrifos in 2 min. It can be concluded that InaV-N can be used efficiently to display foreign functional protein, and these results highlight the high potential of an engineered bacterium to be used in bioremediation of pesticide-contaminated sources in the environment.  相似文献   
84.

Background:

The cultivation of saffron is expanding through the southeast of Iran, and allergy to saffron pollen occurs in workers involved in processing this plant. We aimed to clone, sequence and express a major allergen involved in saffron pollen allergy, and to compare the recombinant with the natural allergen.

Methods:

The N-terminal amino acid sequence of Cro s 1, an allergen from saffron pollen, was determined after immunoblotting. The cDNA encoding for this allergen was cloned by PCR utilizing a primer based on the N-terminal amino acid sequence. Recombinant Cro s 1 (rCro s 1) was expressed as a soluble protein in Pichia pastoris and purified to homogeneity by gel filtration. Inhibition of IgE binding to rCro s 1 by pollen extract was analyzed by ELISA.

Section Title

The allergen Cro s 1 was identified from saffron pollen extracts and cloned by PCR. Cro s 1 cDNA defined an acidic polypeptide with homology to pollen proteins from Chenopodium album and Ligastrum vulgaris. The rCro s 1 was expressed in P. pastoris at 28 mg/l. Saffron pollen extract inhibited the binding of patient serum IgE to rCro s 1.

Conclusion:

We identified and cloned the first Crocus sativus pollen allergen. rCro s 1 cDNA shows a very high homology with Che a 1, the major allergen of lamb''s-quarter, Chenopodium album, Caryophyllales, pollen (97%). Cro s 1 is a useful tool for specific diagnosis and structural studies of occupational allergy to saffron.Key Words: Allergen, cDNA cloning, Cro s 1, Occupational allergy, Saffron pollen  相似文献   
85.
The PsaE protein is located at the reducing side of photosystem I (PSI) and is involved in docking the soluble electron acceptors, particularly ferredoxin. However, deletion of the psaE gene in the cyanobacterium Synechocystis sp. strain PCC 6803 inhibited neither photoautotrophic growth, nor in vivo linear and cyclic electron flows. Using photoacoustic spectroscopy, we detected an oxygen-dependent, PSI-mediated energy storage activity in the DeltapsaE null mutant, which was not present in the wild type (WT). The expression of the genes encoding catalase (katG) and iron superoxide dismutase (sodB) was upregulated in the DeltapsaE mutant, and the increase in katG expression was correlated with an increase in catalase activity of the cells. When catalases were inhibited by sodium azide, the production of reactive oxygen species was enhanced in DeltapsaE relative to WT. Moreover, sodium azide strongly impaired photoautotrophic growth of the DeltapsaE mutant cells while WT was much less sensitive to this inhibitor. The katG gene was deleted in the DeltapsaE mutant, and the resulting double mutant was more photosensitive than the single mutants, showing cell bleaching and lipid peroxidation in high light. Our results show that the presence of the PsaE polypeptide at the reducing side of PSI has a function in avoidance of electron leakage to oxygen in the light (Mehler reaction) and the resulting formation of toxic oxygen species. PsaE-deficient Synechocystis cells can counteract the chronic photoreduction of oxygen by increasing their capacity to detoxify reactive oxygen species.  相似文献   
86.

Objective

To gain insights on the degree of heterogeneity and kinetic differences of streptokinase (SK) from group G (SKG) Streptococci compared with standard SK from group C (SKC) and identification of potentially contributing critical residues (hotspots).

Results

DNA and sequencing analyses confirmed the proper construction of all SK encoding vectors (two SKGs and one standard SKC). SDS-PAGE and western blot analyses confirmed the expression and proper purification of the recombinant SKs from E.coli with the expected size of 47 kDa. Kinetic analyses of two SKGs, compared with SKC, showed higher levels of specific [(×103 IU/mg) of 725 and 715 vs. 536] and fibrin-dependent proteolytic activities [Kcat/KM (min?1/µM) of 37 and 30 vs. 23], accompanied by declined fibrin-independent amidolytic activities [Kcat/KM (min?1/mM) of 109 and 84 vs. 113], respectively. Sequence alignments identified 10 novel residual substitutions scattered in SKα (I33F, R45Q, SKG132, A47D, and G55 N), SKβ (N228 K, F287I), and SKγ domains (L335 V, V396A, T403S) of SKGs, as potential hotspots.

Conclusion

The residue substitutions identified might critically contribute as hot spots to different kinetic parameters of SKGs and might assist in further elucidation of structure/function relations and rational design of SKs with improved (fibrin-dependent) therapeutic properties.
  相似文献   
87.
88.
It is well known that embryo implantation is a critical process in which embryo should be able to reach and attach to endometrium. Until now, various types of factors are involved in the regulation of this process. S100 proteins are calcium-binding proteins, which have vital roles in embryo implantation and have been considered as possible candidate markers for endometrial receptivity. However, studies regarding mode of actions of these proteins are scarce and more mechanistic insights are needed to clarify exact roles of each one of the S100 protein family. Understanding of function of these proteins in different compartments, stages, and phases of endometrium, could pave the way for conducting studies regarding the therapeutic significance of these proteins in some disorders such as recurrent implantation failure. In this review, we outlined roles and possible underlying mechanisms of S100 protein family in embryo implantation.  相似文献   
89.

Background:

Recombinant proteins overexpressed in E. coli are usually deposited in inclusion bodies. Cysteines in the protein contribute to this process. Inter- and intra- molecular disulfide bonds in chitinase, a cysteine-rich protein, cause aggregation when the recombinant protein is overexpressed in E. coli. Hence, aggregated proteins should be solubilized and allowed to refold to obtain native- or correctly- folded recombinant proteins.

Methods:

Dilution method that allows refolding of recombinant proteins, especially at high protein concentrations, is to slowly add the soluble protein to refolding buffer. For this purpose: first, the inclusion bodies containing insoluble proteins were purified; second, the aggregated proteins were solubilized; finally, the soluble proteins were refolded using glutathione redox system, guanidinium chloride, dithiothreitol, sucrose, and glycerol, simultaneously.

Results:

After protein solubilization and refolding, SDS-PAGE showed a 32 kDa band that was recognized by an anti-chitin antibody on western blots.

Conclusions:

By this method, cysteine-rich proteins from E. coli inclusion bodies can be solubilized and correctly folded into active proteins.Key Words: Chitinase, Cysteine-rich proteins, Protein refolding, Protein solubilization  相似文献   
90.
Defects in the acd gene (which may be allelic to ubiH) result in the inactivation of the coenzyme A-linked acetaldehyde dehydrogenase activity of the multifunctional AdhE protein of Escherichia coli. This activity is restored by addition of ubiquinone-0 to cell extracts. However, the alcohol dehydrogenase activity of the AdhE protein is not decreased by an acd mutation. Abolition of ubiquinone biosynthesis by mutation of ubiA or ubiF does not affect either the acetaldehyde dehydrogenase or the alcohol dehydrogenase activity of AdhE. Guaiacol (2-methoxyphenol), which resembles the intermediate that builds up in ubiH mutants, except in lacking the octaprenyl side-chain, was found to inhibit ethanol metabolism in vivo, presumably via inhibition of acetaldehyde dehydrogenase. In vitro assays confirmed that guaiacol inhibited acetaldehyde dehydrogenase. This suggests that the acetaldehyde dehydrogenase activity of AdhE is specifically inhibited by intermediates of ubiquinone synthesis that accumulate in acd mutants and that this inhibition may be relieved by ubiquinone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号