首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1255篇
  免费   84篇
  1339篇
  2023年   3篇
  2022年   10篇
  2021年   22篇
  2020年   11篇
  2019年   28篇
  2018年   29篇
  2017年   17篇
  2016年   36篇
  2015年   53篇
  2014年   54篇
  2013年   89篇
  2012年   99篇
  2011年   122篇
  2010年   67篇
  2009年   47篇
  2008年   94篇
  2007年   90篇
  2006年   64篇
  2005年   77篇
  2004年   67篇
  2003年   49篇
  2002年   46篇
  2001年   15篇
  2000年   11篇
  1999年   14篇
  1998年   7篇
  1997年   5篇
  1996年   9篇
  1995年   7篇
  1994年   6篇
  1993年   5篇
  1992年   7篇
  1991年   12篇
  1990年   10篇
  1989年   8篇
  1988年   6篇
  1987年   5篇
  1986年   6篇
  1985年   6篇
  1984年   4篇
  1983年   3篇
  1982年   5篇
  1981年   4篇
  1979年   3篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1972年   1篇
  1971年   2篇
排序方式: 共有1339条查询结果,搜索用时 15 毫秒
951.
Doxorubicin (DXR) is a widely used and efficient anticancer drug. However, its application is limited by the risk of severe cardiotoxicity. Impairment of cardiac high-energy phosphate homeostasis is an important manifestation of both acute and chronic DXR cardiotoxic action. Using the Langendorff model of the perfused rat heart, we characterized the acute effects of 1-h perfusion with 2 or 20 microM DXR on two key kinases in cardiac energy metabolism, creatine kinase (CK) and AMP-activated protein kinase (AMPK), and related them to functional responses of the perfused heart and structural integrity of the contractile apparatus as well as drug accumulation in cardiomyocytes. DXR-induced changes in CK were dependent on the isoenzyme, with a shift in protein levels of cytosolic isoenzymes from muscle-type CK to brain-type CK, and a destabilization of octamers of the mitochondrial isoenzyme (sarcometric mitochondrial CK) accompanied by drug accumulation in mitochondria. Interestingly, DXR rapidly reduced the protein level and phosphorylation of AMPK as well as phosphorylation of its target, acetyl-CoA-carboxylase. AMPK was strongly affected already at 2 microM DXR, even before substantial cardiac dysfunction occurred. Impairment of CK isoenzymes was mostly moderate but became significant at 20 microM DXR. Only at 2 microM DXR did upregulation of brain-type CK compensate for inactivation of other isoenzymes. These results suggest that an impairment of kinase systems regulating cellular energy homeostasis is involved in the development of DXR cardiotoxicity.  相似文献   
952.
The shape of the dendritic arbor is one of the criteria of neuron classification and reflects functional specialization of particular classes of neurons. The development of a proper dendritic branching pattern strongly relies on interactions between the extracellular environment and intracellular processes responsible for dendrite growth and stability. We previously showed that mammalian target of rapamycin (mTOR) kinase is crucial for this process. In this work, we performed a screen for modifiers of dendritic growth in hippocampal neurons, the expression of which is potentially regulated by mTOR. As a result, we identified Cyr61, an angiogenic factor with unknown neuronal function, as a novel regulator of dendritic growth, which controls dendritic growth in a β1-integrin-dependent manner.  相似文献   
953.
954.
955.
Melanin in the human retinal pigment epithelium (RPE) is believed to play an important photoprotective role. However, unlike in skin, melanosomes in the RPE are rather long‐lived organelles, which increases their risk of modifications resulting from significant fluxes of light and high oxygen tension. In this work, we subjected purified bovine RPE melanosomes to prolonged aerobic exposure with intense visible and near ultraviolet radiation and studied the effects of irradiation on the melanosome's capacity to inhibit peroxidation of lipids induced by iron/ascorbate. We found that control, untreated melanosomes show a concentration‐dependent inhibition of the accumulation of lipid hydroperoxides and the accompanying consumption of oxygen, but photolysed melanosomes lose their antioxidant efficiency and even became prooxidant. The prooxidant action of partially photobleached melanosomes was observed for pigment granules with a melanin content reduced by about 50% compared with untreated melanosomes, as determined by electron spin resonance spectroscopy. We have previously shown that a similar loss in the content of the RPE melanin occurs during human lifetime, which may suggest that the normal antioxidant properties of human RPE melanin become compromised with aging.  相似文献   
956.
Despite pain prevalence altering with age, the effects of aging on the properties of nociceptors are not well understood. Nociceptors, whose somas are located in dorsal root ganglia, are frequently divided into two groups based on their ability to bind isolectin B4 (IB4). Here, using cultured neurons from 1‐, 3‐, 5‐, 8‐, 12‐, and 18‐month‐old mice, we investigate age‐dependent changes in IB4‐positive and IB4‐negative neurons. Current‐clamp experiments at physiological temperature revealed nonlinear changes in firing frequency of IB4‐positive, but not IB4‐negative neurons, with a peak at 8 months. This was likely due to the presence of proexcitatory conductances activated at depolarized membrane potentials and significantly higher input resistances found in IB4‐positive neurons from 8‐month‐old mice. Repetitive firing in nociceptors is driven primarily by the TTX‐resistant sodium current, and indeed, IB4‐positive neurons from 8‐month‐old mice were found to receive larger contributions from the TTX‐resistant window current around the resting membrane potential. To further address the mechanisms behind these differences, we performed RNA‐seq experiments on IB4‐positive and IB4‐negative neurons from 1‐, 8‐, and 18‐month‐old mice. We found a larger number of genes significantly affected by age within the IB4‐positive than IB4‐negative neurons from 8‐month‐old mice, including known determinants of nociceptor excitability. The above pronounced age‐dependent changes at the cellular and molecular levels in IB4‐positive neurons point to potential mechanisms behind the reported increase in pain sensitivity in middle‐aged rodents and humans, and highlight the possibility of targeting a particular group of neurons in the development of age‐tailored pain treatments.  相似文献   
957.
FGF1 and FGF2 bind to specific cell-surface tyrosine kinase receptors (FGFRs) and activate intracellular signaling that leads to proliferation, migration or differentiation of many cell types. Besides this classical mode of action, under stress conditions, FGF1 and FGF2 are translocated in a receptor-dependent manner via the endosomal membrane into the cytosol and nucleus of the cell. However, despite many years of research, the role of translocated FGF1 and FGF2 inside the cell remains unclear. Here, we reveal an anti-apoptotic activity of intracellular FGF1 and FGF2, which is independent of FGFR activation and downstream signaling. We observed an inhibition of cell apoptosis induced by serum starvation or staurosporine upon treatment with exogenous FGF1 or FGF2, despite the presence of highly potent FGFR inhibitors. Similar results were found when the tyrosine kinase of FGFR1 was completely blocked by a specific mutation. Moreover, the anti-apoptotic effect of the growth factors was abolished by known inhibitors of the translocation of FGF1 and FGF2 from the endosomes to the interior of the cell. Interestingly, FGF2 showed higher anti-apoptotic activity than FGF1. Since FGF2 is not phosphorylated by PKCδ and is present inside the nucleus longer than is FGF1, we speculated that the different activities could reflect their diverse nuclear export kinetics. Indeed, we observed that FGF1 mutations preventing binding to nucleolin and therefore phosphorylation in the nucleus affect the anti-apoptotic activity of FGF1. Taken together, our data indicate that the translocation of FGF1 and FGF2 protects cells against apoptosis and promotes cell survival.  相似文献   
958.
Propagation of Norway spruce via somatic embryogenesis   总被引:5,自引:0,他引:5  
Somatic embryogenesis combined with cryopreservation is an attractive method to propagate Norway spruce (Picea abies) vegetatively both as a tool in the breeding programme and for large-scale clonal propagation of elite material. Somatic embryos are also a valuable tool for studying regulation of embryo development. Embryogenic cell lines of Norway spruce are established from zygotic embryos. The cell lines proliferate as proembryogenic masses (PEMs). Somatic embryos develop from PEMs. PEM-to-somatic embryo transition is a key developmental switch that determines the yield and quality of mature somatic embryos. Withdrawal of plant growth regulators (PGRs) stimulates PEM-to-somatic embryo transition accompanied by programmed cell death (PCD) in PEMs. This PCD is mediated by a marked decrease in extracellular pH. If the acidification is abolished by buffering the culture medium, PEM-to-somatic embryo transition together with PCD is inhibited. Cell death, induced by withdrawal of PGRs, can be suppressed by extra supply of lipo-chitooligosaccharides (LCOs). Extracellular chitinases are probably involved in production and degradation of LCOs. During early embryogeny, the embryos form an embryonal mass surrounded by a surface layer. The formation of a surface layer is accompanied by a switch in the expression pattern of an Ltp-like gene (Pa18) and a homeobox gene (PaHB1), from ubiquitous expression in PEMs to surface layer-specific in somatic embryos. Ectopic expression of Pa18 and PaHB1 leads to an early developmental block. Transgenic embryos and plants of Norway spruce are routinely produced by using a biolistic approach. The transgenic material is used for studying the importance of specific genes for regulating plant development, but transgenic plants can also be used for identification of candidate genes for use in the breeding programme.  相似文献   
959.
Assessment of non-HLA variants alongside standard HLA testing was previously shown to improve the identification of potential coeliac disease (CD) patients. We intended to identify new genetic variants associated with CD in the Polish population that would improve CD risk prediction when used alongside HLA haplotype analysis. DNA samples of 336 CD and 264 unrelated healthy controls were used to create DNA pools for a genome wide association study (GWAS). GWAS findings were validated with individual HLA tag single nucleotide polymorphism (SNP) typing of 473 patients and 714 healthy controls. Association analysis using four HLA-tagging SNPs showed that, as was found in other populations, positive predicting genotypes (HLA-DQ2.5/DQ2.5, HLA-DQ2.5/DQ2.2, and HLA-DQ2.5/DQ8) were found at higher frequencies in CD patients than in healthy control individuals in the Polish population. Both CD-associated SNPs discovered by GWAS were found in the CD susceptibility region, confirming the previously-determined association of the major histocompatibility (MHC) region with CD pathogenesis. The two most significant SNPs from the GWAS were rs9272346 (HLA-dependent; localized within 1 Kb of DQA1) and rs3130484 (HLA-independent; mapped to MSH5). Specificity of CD prediction using the four HLA-tagging SNPs achieved 92.9%, but sensitivity was only 45.5%. However, when a testing combination of the HLA-tagging SNPs and the MSH5 SNP was used, specificity decreased to 80%, and sensitivity increased to 74%. This study confirmed that improvement of CD risk prediction sensitivity could be achieved by including non-HLA SNPs alongside HLA SNPs in genetic testing.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号