首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   2篇
  2022年   1篇
  2021年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   7篇
  2012年   4篇
  2011年   8篇
  2009年   8篇
  2008年   2篇
  2007年   4篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  2003年   6篇
  2002年   4篇
  2001年   8篇
  2000年   4篇
  1999年   1篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   7篇
  1991年   1篇
  1989年   1篇
  1987年   2篇
排序方式: 共有103条查询结果,搜索用时 31 毫秒
51.
The aim of this research effort was to investigate the role of various sugar substrates in the growth medium upon thermotolerance and upon survival during storage after freeze-drying of Lactobacillus bulgaricus. Addition of the sugars tested to the growth medium, and of these and sorbitol to the drying medium (skim milk) was investigated so as to determine whether a relationship exists between growth and drying media, in terms of protection of freeze-dried cells throughout storage. The lowest decrease in viability of L. bulgaricus cells after freeze-drying was obtained when that organism was grown in the presence of mannose. However, L. bulgaricus clearly survived better during storage when cells had been grown in the presence of fructose, lactose or mannose rather than glucose (the standard sugar in the growth medium). A similar effect could not be observed in terms of thermotolerance; in this case, the growth medium supplemented with lactose was found to yield cells bearing the highest heat resistance. Supplementation of the drying medium with glucose, fructose, lactose, mannose or sorbitol led in most cases to enhancement of protection during storage, to a degree that was growth medium-dependent.  相似文献   
52.
Microbiological profile in Serra ewes' cheese during ripening   总被引:2,自引:0,他引:2  
The microflora of Serra cheese was monitored during a 35 d ripening period at three different periods within the ewe's lactation season. After 7 d ripening, the numbers of micro-organisms reached their maximum, and lactic acid bacteria (LAB) and coliforms were the predominant groups. Pseudomonads were not detected after 1 week of ripening. At all stages of ripening, cheeses manufactured in spring exhibited the lowest numbers of LAB and yeasts, whereas cheeses manufactured in winter showed the lowest numbers of coliforms and staphylococci.
Leuconostoc lactis was the most abundant LAB found in Serra cheese whereas Enterococcus faecium and Lactococcus lactis spp. lactis exhibited the highest decrease in percentage composition. Numbers of both Leuc. mesenteroides and Lactobacillus paracasei tended to increase throughout ripening. The most abundant coliform was Hafnia alvei. Klebsiella oxytoca was found in curd but declined in number during ripening. Staphylococcal flora of curd was mainly composed of Staphylococcus xylosus, Staph. aureus and Staph. epidermidis. Staphylococcus xylosus was the major species found at the end of ripening. Pseudomonas fluorescens , was the only Pseudomonas species isolated from the curd. Although a broad spectrum of yeasts were found in Serra cheese, Sporobolomyces roseus was the most abundant yeast isolated.  相似文献   
53.
The balance equations pertaining to the modelling of a CSTR performing an enzyme-catalyzed reaction in the presence of enzyme deactivation are developed. Combination of heuristic correlations for the size-dependent cost of equipment and the purification-dependent cost of recovery of product with the mass balances was used as a basis for the development of expressions relating a (suitably defined) dimensionless economic parameter with the optimal outlet substrate concentration under the assumption that overall production costs per unit mass of product were to be minimized. The situation of Michaelis-Menten kinetics for the substrate depletion and first order kinetics for the deactivation of enzyme (considering that the free enzyme and the enzyme in the enzyme/substrate complex deactivate at different rates) was explored, and plots for several values of the parameters germane to the analysis are included.List of Symbols C E mol m–3 concentration of active enzyme - C E,0 mol m–3 initial concentration of active enzyme - C p mol m–3 concentration of product of interest - C s mol m–3 concentration of substrate - C s,0 mol m–3 initial concentration of substrate - I $ capital cost of equipment - k d s–1 deactivation constant of free enzyme - k d s–1 deactivation constant of enzyme in enzyme/substrate complex - K m mol m–3 Michaelis-Menten constant - K m dimensionless counterpart of K m - k r s–1 rate constant associated with conversion of enzyme/substrate complex into product - M w kg mol–1 molecular weight of product of interest - P $ kg–1 cost of recovery of product of interest in pure form - Q m3s–1 volumetric flow rate - V m3 volume of reactor - X $ kg–1 global manufacture cost of product of interest in pure form - X dimensionless counterpart of X Greek Symbols 1 $ m–1.8 constant - 2 $ m–3 constant - t s useful life of CSTR - 0 ratio of initial concentrations of enzyme and substrate - ratio of deactivation constant of free enzyme to rate constant of depletion of substrate - ratio of deactivation constants - univariate function expressing the dependence of the rate of enzyme deactivation on C S - univariate function expressing the dependence of the rate of substrate depletion on C S - dimensionless economic parameter  相似文献   
54.
This communication consists of a mathematical analysis encompassing the maximization of the average rate of monomer production in a batch reactor performing an enzymatic reaction in a system consisting of a multiplicity of polymeric substrates which compete with one another for the active site of a soluble enzyme, under the assumption that the form of the rate expression is consistent with the Michaelis-Menten mechanism. The general form for the functional dependence of the various substrate concentrations on time is obtained in dimensionless form using matrix terminology; the optimum batch time is found for a simpler situation and the effect of various process and system variables thereon is discussed. The reasoning developed here emphasizes, in a quantitative fashion, the fact that the commonly used lumped substrate approaches lead to nonconservative decisions in industrial practice, and hence should be avoided when searching for trustworthy estimates of optimum operation.List of Symbols O 1/s row vector of zeros - a 1/s row vector of rate constants k i(i = 2,...,N) - A 1/s matrix of rate constants k i and k–i (i=2,...,N) - b 1/s row vector of rate constant k 2 and zeros - C mol/m3 molar concentration of S - C mol/m3 vector of molar concentrations of C i (i=0, 1, 2, ..., N) - C 0 mol/m3 column vector of initial molar concentrations of C i(i=0, 1, 2,.., N) - C –01 mol/m3 column vector of initial molar concentrations of C i(i=2,..., N) - C E, tot mol/m3 total molar concentration of enzyme molecules - C i mol/m3 molar concentration of S i (i=0,1,2,...,N) - C i, o mol/m3 initial molar concentration of S i(i=0, 1, 2, ..., N) - E enzyme molecule - I identity matrix - K 1/s matrix of lumped rate constants - k i 1/s pseudo-first order lumped rate constant associated with the formation of S i -1 (i=1, 2, ...,N) - k cat, i 1/s first order rate constant associated with the formation of S i-1 (i=1, 2, ..., N) - K m mol/m3 Michaelis-Menten constant - L number of distinct eigenvalues - M i multiplicity of the i-th eigenvalue - N maximum number of monomer residues in a single polymeric molecule - r 1 mol/m3 s rate of formation of S 0 - r i mol/m3 s rate of release of S i -1 - r opt maximum average dimensionless rate of production of monomer S0 - S lumped, pseudo substrate - S1 inert moiety - S i substrate containing i monomer residues, each labile to detachment as - S0 by enzymatic action (i=1,2,...,N) - t s time elapsed since startup of batch reaction - t lag s time interval required for cleaning, loading, and unloading the batch reactor - t opt s time interval leading to the maximum average rate of monomer production - v ij s1-j eigenvectors associated with eigenvalue imi (i=1, 2, ..., L; j =1, 2, ..., Mi) Greek Symbols ij mol/m3 arbitrary constant associated with eigenvalue i (i=1, 2, ..., L; j=1, 2, ..., M i ) - 1/s generic eigenvalue - i 1/s i-th eigenvalue  相似文献   
55.
The balance equations pertaining to the modelling of batch reactors performing an enzyme-catalyzed reaction in the presence of enzyme deactivation are developed. The functional form of the solution for the general situation where both the rate of the enzyme-catalyzed reaction and the rate of enzyme deactivation are dependent on the substrate concentration is obtained, as well as the condition that applies if a maximum conversion of substrate is sought. Finally, two examples of practical interest are explored to emphasize the usefulness of the analysis presented.List of Symbols C E mol/m3 concentration of active enzyme - C E,O mol/m3 initial concentration of active enzyme - C S mol/m3 concentration of substrate - C S,O mol/m3 initial concentration of substrate - C S,min mol/m3 minimum value for the concentration of substrate - k 1/s first order rate constant associated with conversion of enzyme/substrate complex into product - k 1 1/s first order deactivation constant of enzyme (or free enzyme) - k 2 1/s first order deactivation constant of enzyme in enzyme/substrate complex form - K m mol/m3 Michaelis-Menten constant - p mol/(m3s) time derivative of C S - q mol/m3 auxiliary variable - t s time elapsed after reactor startup Greek Symbols 1/s univariate function expressing the dependence of the rate of enzyme deactivation on C S - mol/m3 dummy variable of integration - mol/m3 dummy variable of integration - 1/s univariate function expressing the dependence of the rate of substrate depletion on C S - m3/(mol s) derivative of with respect to C S  相似文献   
56.

Background  

Receptor-like kinases are a prominent class of surface receptors that regulate many aspects of the plant life cycle. Despite recent advances the function of most receptor-like kinases remains elusive. Therefore, it is paramount to investigate these receptors. The task is complicated by the fact that receptor-like kinases belong to a large monophyletic family with many sub-clades. In general, functional analysis of gene family members by reverse genetics is often obscured by several issues, such as redundancy, subtle or difficult to detect phenotypes in mutants, or by decision problems regarding suitable biological and biochemical assays. Therefore, in many cases additional strategies have to be employed to allow inference of hypotheses regarding gene function.  相似文献   
57.
AIMS: This work was undertaken to study the feasibility and the characteristics of a fermented product made of goat milk, using a mixed starter culture of Bifidobacterium animalis and Lactobacillus acidophilus under controlled conditions, and to determine their survival in the fermented milk during refrigerated storage. METHODS AND RESULTS: Goat milk was inoculated with Lact. acidophilus and Bif. animalis mixed starter, fermented in a glass bioreactor with controlled temperature (37 degrees C) and anaerobiosis, and monitored for growth and acidification. The fermented milk was then stored for 10 days under refrigeration, and monitored daily for starter microflora survival and pH changes. Lact. acidophilus viable counts reached a maximum of 7.1 x 10(8) colony-forming units (CFU) ml(-1), and Bif. animalis a maximum of 6.3 x 10(7) CFU ml(-1) by 20 h of fermentation. During refrigerated storage, both strains exhibited a good survival, with viable numbers remaining essentially constant throughout the experiment, whereas the pH of the fermented milk dropped slightly. CONCLUSIONS: Mixed cultures of Bif. animalis and Lact. acidophilus may be used to produce fermented goat milk with high counts of both probiotic strains. SIGNIFICANCE AND IMPACT OF THE STUDY: Goat milk fermented with Bif. animalis and Lact. acidophilus can be manufactured as an alternative probiotic dairy product.  相似文献   
58.
The influence of light intensity upon biomass and fatty acid productivity by the microalga Pavlova lutheri was experimentally studied using a novel device. This device was designed to automatically adjust light intensity in a photobioreactor: it takes on-line measurements of biomass concentration, and was successfully tested to implement a feedback control of light based on the growth rate variation. Using said device, batch and semicontinuous cultures of P. lutheri were maintained at maximum growth rates and biomass productivities – hence avoiding photoinhibition, and consequent waste of radiant energy. Several cultures were run with said device, and their performances were compared with those of control cultures submitted to constant light intensity; the biomass levels attained, as well as the yields of eicosapentaenoic and docosahexaenoic acids were calculated – and were consistently higher than those of their uncontrolled counterpart.  相似文献   
59.
The distribution of micro-organisms in mature Serra, a traditional Portuguese cheese made from unpasteurised ewes' milk without added starter culture, was examined by light microscopy and electron microscopy. Four populations of micro-organisms were recognized according to their position within the cheese: (i) those present as apparently axenic colonies within the curd matrix; (ii) bacteria growing along curd junctions; (iii) yeasts and bacteria present in the smear on the surface of the cheese and (iv) bacteria found in cracks which penetrated the outer part of the cheese from the rind. Two types of crystals were observed, together with contaminants of vegetable origin and somatic cells originating from the milk.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号