首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95592篇
  免费   473篇
  国内免费   884篇
  96949篇
  2022年   30篇
  2021年   57篇
  2020年   29篇
  2019年   45篇
  2018年   11868篇
  2017年   10689篇
  2016年   7512篇
  2015年   673篇
  2014年   395篇
  2013年   436篇
  2012年   4372篇
  2011年   12951篇
  2010年   12086篇
  2009年   8310篇
  2008年   9897篇
  2007年   11448篇
  2006年   347篇
  2005年   595篇
  2004年   1052篇
  2003年   1080篇
  2002年   849篇
  2001年   315篇
  2000年   218篇
  1999年   70篇
  1998年   27篇
  1997年   50篇
  1996年   29篇
  1993年   47篇
  1992年   74篇
  1991年   64篇
  1990年   37篇
  1989年   36篇
  1988年   57篇
  1987年   44篇
  1986年   27篇
  1985年   48篇
  1984年   34篇
  1983年   49篇
  1982年   21篇
  1981年   30篇
  1980年   21篇
  1979年   30篇
  1978年   30篇
  1977年   21篇
  1975年   34篇
  1973年   23篇
  1972年   268篇
  1971年   293篇
  1965年   20篇
  1962年   27篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Landfills are a vital component of our waste handling processes. Our lack of knowledge on the microbial processes in these systems, however, hampers our ability to design the next generation of landfills that: (1) enhance the rate and extent of waste decomposition, (2) produce byproducts of some value (e.g., methane that can be used for energy generation), and, (3) minimize their overall impact on driving climate change through the emission of greenhouse gases. In this review, the current state of knowledge the microbial community structure and activity in both the refuse and overlying cover soils is discussed, and suggestions provided for future research in this critical aspect of our infrastructure.  相似文献   
952.
Dyckia ibiramensis is a naturally rare, endemic and threatened bromeliad which occurs naturally on 4 km of rocky river outcroppings in Southern Brazil. For this study, subpopulations of the species were characterized based on size and genetics, to compile information for in situ and ex situ conservation strategies. A census of the rosettes was undertaken for each subpopulation and seven allozyme polymorphic loci were used to estimate genetic diversity and structure of adults and offspring and assess the mating system. In general, the subpopulations were small and most of the rosettes were aggregated into clumps. The species showed a high genetic diversity ([^(H)]e = 0.219 \hat{H}_{e} = 0.219 ) and significant fixation index ([^(f)] = 0.642, \hat{f} = 0.642, P ≤ 0.05). The estimate of differentiation among all adult subpopulations indicate pronounced genetic structure ([^(G)]ST = 0.674 \hat{G}^{\prime}_{ST} = 0.674 ). D. ibiramensis has a mixed mating system and multilocus outcrossing rates [^(t)]m \hat{t}_{m} were variable between subpopulations. This study demonstrates the importance of in situ preservation of all subpopulations for the maintenance of species diversity. For effective ex situ conservation, it would be necessary to collect seeds from 52 to 99 seed-rosettes, depending on the target population.  相似文献   
953.
Brandt’s vole (Lasiopodomys brandtii) distribution is discontinuous in Inner Mongolia with some populations isolated from others. Recently, some isolated populations have suffered extinction, and the factors responsible remain elusive. Genetic drift is one of the processes affecting population genetic differentiation, and can play a substantial role in the divergence of small, isolated populations. Using seven microsatellite markers, we genotyped four geographically isolated populations of Brandt’s vole, all of which exhibit episodic fluctuations in population density. The results showed a strong genetic differentiation among the geographically distinct populations (total F ST = 0.124) and in particular, one population (Zhengxiangbaiqi) was isolated from all others (F ST values were greatest between Zhengxiangbaiqi and other populations). Furthermore, high levels of inbreeding (F IS values ranged from 0.205 to 0.290) within each distinct population suggest that inbreeding has and is likely occurring in Brandt’s vole populations. These processes can decrease average individual fitness and consequently increase the risk of extinction of the species.  相似文献   
954.
Nesidiocoris tenuis, an omnivorous arthropod, infests plants in either the absence or presence of prey arthropods. We studied whether plant-infestation experience of N. tenuis affected its subsequent prey-finding behavior. We used sesame plants and eggplants as food plants for N. tenuis, and common cutworm (CCW) (Spodoptera litura larvae) as prey. We focused on their olfactory response to CCW-infested sesame plants versus CCW-infested eggplants in a Y-tube olfactometer. When N. tenuis adults experienced the infestation of sesame plants for one day, they preferred volatiles from CCW-infested sesame plants to those from CCW-infested eggplants. By contrast, when N. tenuis experienced the infestation of eggplants for one day, they showed no difference in their preference between the two odor sources. When the duration of the infestation of plants was increased to four days, N. tenuis that had experienced sesame plants showed a reversed response: they preferred CCW-infested eggplant volatiles, while those that had infested eggplants again showed no difference in their preference. Next, we studied the olfactory preference of N. tenuis that had previously infested plants with moth (Ephestia kuehniella) eggs. We found that irrespective of plant species and of duration of experience (either one or four days), N. tenuis adults that had previously experienced one plant species showed a significant preference for volatiles from CCW-infested plants of the same species. The blends of the volatiles emitted from CCW-infested sesame plants and those from CCW-infested eggplants were qualitatively different. Possibility to control the olfactory response of N. tenuis to certain prey-infested plant volatiles by adjusting their feeding history is discussed.  相似文献   
955.
Riparian areas are often the only green areas left in urban and suburban landscapes, providing opportunities for conservation and connectivity of both aquatic and terrestrial organisms. While city planners and land managers often tout the importance of riparian networks for these uses, it is not well established if urban riparian plant communities are actually functioning as connected assemblages. Furthermore, urban riparian zones are well known to be highly invaded by non-native plant species and may be functioning to increase the spread of non-native species across the landscape. Here we examine connectivity of plant assemblages in riparian networks within an extensively urbanized landscape. We sampled riparian plant communities at 13 sites along three second-order streams of the Rahway River watershed, New Jersey. We also characterized propagule dispersal at each site by sampling litter packs on the river banks five times between March–October 2011 and identifying germinants from litter packs after cold stratification. Species turnover of both riparian and litter vegetation was more strongly associated with flow distance, particularly for native species, indicating that riverine systems are important for promoting connectivity of native plant assemblages in urban landscapes. However, non-native germinants significantly dominated propagule dispersal along the stream reaches, particularly early in the growing season, suggesting spread utilizing the river system and preemption may be an important mechanism for invasion success in this system. Our data show that management of invasive species should be planned and implemented at the watershed scale to reduce spread via the river system.  相似文献   
956.
In order to identify the lower limb movements accurately and quickly, a recognition method based on extreme learning machine (ELM) is proposed. The recognizing target set is constructed by decomposing the daily actions into different segments. To get the recognition accuracy of seven movements based on the surface electromyography, the recognition feature vector space is established by integrating short-time statistical characteristics under time domain, and locally linear embedding algorithm is used to reduce the computational complexity and improve robustness of algorithm. Compared with BP, the overall recognition accuracy for each subject in the best dimension with ELM is above 95%.  相似文献   
957.
Extreme drought events challenge ecosystem functioning. Ecological response to drought is studied worldwide in a growing number of field experiments by rain-out shelters. Yet, few meta-analyses face severe challenges in the comparability of studies. This is partly because build-up of drought stress in rain-out shelters is modified by ambient weather conditions. Rain-out shelters can further create confounding effects (radiation, temperature), which may influence plant responses. Yet, a quantification of ecophysiological effects within rain-out shelters under opposing ambient weather conditions and of microclimatological artifacts is missing. Here, we examined phytometers—standardized potted individuals of Plantago lanceolata—under rain-out shelter, rain-out shelter artifact control, and ambient control during opposing outside microclimatological conditions. Furthermore, we tested for artifacts of rain-out shelters on plant responses in a long-term semi-natural grassland experiment. Phytometer plants below the rain-out shelters showed lower stomatal conductance, maximum quantum efficiency, and leaf water potential during warm ambient conditions with high evaporative demand than during cold conditions with low evaporative demand. Plant performance was highly correlated with ambient temperature and vapor pressure deficit (VPD). Rain-out shelter artifacts on plant responses were nonsignificant. Rain-out shelters remain a viable tool for studying ecosystem responses to drought. However, drought manipulations using rain-out shelters are strongly modified by ambient weather conditions. Attributing the results from rain-out shelter studies to drought effects and comparability among studies and study years therefore requires the quantification of the realized drought stress, for example, by relating ecosystem responses to measured microclimatological parameters such as air temperature and VPD.  相似文献   
958.
Donor livers available to transplant for patients with end-stage liver disease are in severe shortage. One possible avenue to expand the donor pool is to recondition livers that would be otherwise discarded due to excessive fat content. Severely steatotic livers (also known as fatty livers) are highly susceptible to ischemia-reperfusion injury and as a result, primary liver non-function post-transplantation. Prior studies in isolated perfused rat livers suggest that “defatting” may be possible in a timeframe of a few hours; thus, it is conceivable that fatty liver grafts could be recovered by machine perfusion to clear stored fat from the organ prior to transplantation. However, studies using hepatoma cells and adult hepatocytes made fatty in culture report that defatting may take several days. Because cell culture studies were done in static conditions, we hypothesized that the defatting kinetics are highly sensitive to flow-mediated transport of metabolites. To investigate this question, we experimentally evaluated the effect of increasing flow rate on the defatting kinetics of cultured HepG2 cells and developed an in silico combined reaction-transport model to identify possible rate-limiting steps in the defatting process. We found that in cultured fatty HepG2 cells, the time required to clear stored fat down to lean control cells can be reduced from 48 to 4–6 h by switching from static to flow conditions. The flow required resulted in a fluid shear of .008 Pa, which did not adversely affect hepatic function. The reaction-transport model suggests that the transport of l-carnitine, which is the carrier responsible for taking free fatty acids into the mitochondria, is the key rate-limiting process in defatting that was modulated by flow. Therefore, we can ensure higher levels of l-carnitine uptake by the cells by choosing flow rates that minimize the limiting mass transport while minimizing shear stress.  相似文献   
959.
Patterns of genetic structure and diversity are largely mediated by a species’ ecological niche and sensitivity to climate variation. Some species with narrow ecological niches have been found to exhibit increased population differentiation, limited gene flow across populations, and reduced population genetic diversity. In this study, we examine patterns of population genetic structure and diversity of four bumble bee species that are broadly sympatric, but do not necessarily inhabit the same ecological niche in the Pacific Northwest of the United States. Testing for the effect of isolation by geographic distance (IBD) with linearized F st and D est found that Bombus sylvicola and B. mixtus exhibited significant IBD across populations. In contrast, both B. melanopygus and B. flavifrons, two species that are distributed across a broad elevation gradient, exhibited no IBD, a result further corroborated by Bayesian a priori population assignment tests. Furthermore, we discovered that B. sylvicola populations distributed on the Olympic Peninsula have significantly less average allelic diversity than populations distributed in the Cascade Mountains. Our results suggest that populations distributed in the Olympic Mountains represent a distinct genetic cluster relative to the Cascade Mountains, with B. sylvicola and B. mixtus likely experiencing the greatest degree of population genetic differentiation relative to B. flavifrons and B. melanopygus. While bumble bees are known to co-exist across a diversity of habitats, our results demonstrate that underlying population genetic structure and diversity may not necessarily be similar across species, and are largely governed by their respective niches.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号