首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1449篇
  免费   130篇
  1579篇
  2022年   18篇
  2021年   27篇
  2020年   22篇
  2019年   26篇
  2018年   41篇
  2017年   26篇
  2016年   36篇
  2015年   61篇
  2014年   70篇
  2013年   86篇
  2012年   136篇
  2011年   103篇
  2010年   70篇
  2009年   60篇
  2008年   67篇
  2007年   69篇
  2006年   56篇
  2005年   57篇
  2004年   54篇
  2003年   48篇
  2002年   39篇
  2001年   28篇
  2000年   17篇
  1999年   14篇
  1998年   13篇
  1996年   8篇
  1994年   10篇
  1993年   8篇
  1992年   18篇
  1991年   14篇
  1990年   17篇
  1989年   18篇
  1988年   6篇
  1987年   12篇
  1986年   16篇
  1985年   6篇
  1984年   14篇
  1983年   11篇
  1982年   11篇
  1981年   11篇
  1980年   9篇
  1979年   16篇
  1978年   15篇
  1977年   18篇
  1976年   9篇
  1975年   7篇
  1974年   7篇
  1973年   14篇
  1972年   17篇
  1968年   5篇
排序方式: 共有1579条查询结果,搜索用时 0 毫秒
61.
The ambr bioreactors are single‐use microbioreactors for cell line development and process optimization. With operating conditions for large‐scale biopharmaceutical production properly scaled down, microbioreactors such as the ambr15? can potentially be used to predict the effect of process changes such as modified media or different cell lines. While there have been some recent studies evaluating the ambr15? technology as a scale‐down model for fed‐batch operations, little has been reported for semi‐continuous or continuous operation. Gassing rates and dilution rates in the ambr15? were varied in this study to attempt to replicate performance of a perfusion process at the 5 L scale. At both scales, changes to metabolite production and consumption, and cell growth rate and therapeutic protein production were measured. Conditions were identified in the ambr15? bioreactor that produced metabolic shifts and specific metabolic and protein production rates that are characteristic of the corresponding 5 L perfusion process. A dynamic flux balance (DFB) model was employed to understand and predict the metabolic changes observed. The DFB model predicted trends observed experimentally, including lower specific glucose consumption and a switch from lactate production to consumption when dissolved CO2 was maintained at higher levels in the broth. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:420–431, 2018  相似文献   
62.

Objective

We examined the extent to which differences in hospital-level cesarean delivery rates in Massachusetts were attributable to hospital-level, rather than maternal, characteristics.

Methods

Birth certificate and maternal in-patient hospital discharge records for 2004–06 in Massachusetts were linked. The study population was nulliparous, term, singleton, and vertex births (NTSV) (n = 80,371) in 49 hospitals. Covariates included mother''s age, race/ethnicity, education, infant birth weight, gestational age, labor induction (yes/no), hospital shift at time of birth, and preexisting health conditions. We estimated multilevel logistic regression models to assess the likelihood of a cesarean delivery

Results

Overall, among women with NTSV births, 26.5% births were cesarean, with a range of 14% to 38.3% across hospitals. In unadjusted models, the between-hospital variance was 0.103 (SE 0.022); adjusting for demographic, socioeconomic and preexisting medical conditions did not reduce any hospital-level variation 0.108 (SE 0.023).

Conclusion

Even after adjusting for both socio-demographic and clinical factors, the chance of a cesarean delivery for NTSV pregnancies varied according to hospital, suggesting the importance of hospital practices and culture in determining a hospital''s cesarean rate.  相似文献   
63.
Sequential processing of H-Ras by protein farnesyl transferase (FTase), Ras converting enzyme (Rce1), and protein-S-isoprenylcysteine O-methyltransferase (Icmt) to give H-Ras C-terminal farnesyl-S-cysteine methyl ester is required for appropriate H-Ras membrane localization and function, including activation of the mitogen-activated protein kinase (MAPK) cascade. We employed a Xenopus laevis oocyte whole-cell model system to examine whether anilinogeranyl diphosphate analogues of similar shape and size, but with a hydrophobicity different from that of the FTase substrate farnesyl diphosphate (FPP), could ablate biological function of H-Ras. Analysis of oocyte maturation kinetics following microinjection of in vitro analogue-modified H-Ras into isoprenoid-depleted oocytes revealed that analogues with a hydrophobicity near that of FPP supported H-Ras biological function, while the analogues p-nitroanilinogeranyl diphosphate (p-NO2-AGPP), p-cyanoanilinogeranyl diphosphate (p-CN-AGPP), and isoxazolaminogeranyl diphosphate (Isox-GPP) with hydrophobicities 2-5 orders of magnitude lower than that of FPP did not. We found that although H-Ras modified with FPP analogues p-NO2-AGPP, p-CN-AGPP, and Isox-GPP was an efficient substrate for C-terminal postprenylation processing by Rce1 and Icmt, co-injection of H-Ras with analogues p-NO2-AGPP, p-CN-AGPP, or Isox-GPP could not activate MAPK. We propose that H-Ras biological function requires a minimum lipophilicity of the prenyl group to allow important interactions downstream of the C-terminal processed H-Ras protein. The hydrophilic FPP analogues p-NO2-AGPP, p-CN-AGPP, and Isox-GPP are H-Ras function inhibitors (RFIs) and serve as lead compounds for a unique class of potential anticancer therapeutics.  相似文献   
64.
The Leishmania guanosine 5′‐monophosphate reductase (GMPR) and inosine 5′‐monophosphate dehydrogenase (IMPDH) are purine metabolic enzymes that function maintaining the cellular adenylate and guanylate nucleotide. Interestingly, both enzymes contain a cystathionine‐β‐synthase domain (CBS). To investigate this metabolic regulation, the Leishmania GMPR was cloned and shown to be sufficient to complement the guaC (GMPR), but not the guaB (IMPDH), mutation in Escherichia coli. Kinetic studies confirmed that the Leishmania GMPR catalyzed a strict NADPH‐dependent reductive deamination of GMP to produce IMP. Addition of GTP or high levels of GMP induced a marked increase in activity without altering the Km values for the substrates. In contrast, the binding of ATP decreased the GMPR activity and increased the GMP Km value 10‐fold. These kinetic changes were correlated with changes in the GMPR quaternary structure, induced by the binding of GMP, GTP, or ATP to the GMPR CBS domain. The capacity of these CBS domains to mediate the catalytic activity of the IMPDH and GMPR provides a regulatory mechanism for balancing the intracellular adenylate and guanylate pools.  相似文献   
65.
By linking two or three mecamylamine or 2,2,6,6-tetramethylpiperidine (TMP) molecules together via a linear lipophilic bis-methylene linker or a specially designed conformationally restricted tris-linker, a series of bis- and tris-tertiary amine analogs has been synthesized and evaluated as potent antagonists at nAChRs mediating nicotine-evoked [3H]dopamine release from rat striatal slices. Compounds 7e, 14b and 16 demonstrated high potency in decreasing nicotine-evoked [3H]dopamine release (IC50 = 2.2, 46, and 107 nM, respectively). The preliminary structure–activity data obtained with these new analogs suggest the importance of the length of the methylene linker in the bis-analog series. Such bis-tertiary amino analogs may provide a new strategy for the design of drugable ligands that have high inhibitory potency against nAChRs mediating nicotine-evoked dopamine release in striatum, which have been suggested to be target receptors of interest in the development of potential smoking cessation therapies.  相似文献   
66.
Osteopontin (OPN) plays an important role in left ventricular (LV) remodeling after myocardial infarction (MI) by promoting collagen synthesis and accumulation. This study tested the hypothesis that MMP inhibition modulates post-MI LV remodeling in mice lacking OPN. Wild-type (WT) and OPN knockout (KO) mice were treated daily with MMP inhibitor (PD166793, 30 mg/kg/day) starting 3 days post-MI. LV functional and structural remodeling was measured 14 days post-MI. Infarct size was similar in WT and KO groups with or without MMP inhibition. M-mode echocardiography showed greater increase in LV end-diastolic (LVEDD) and end-systolic diameters (LVESD) and decrease in percent fractional shortening (%FS) and ejection fraction in KO-MI versus WT-MI. MMP inhibition decreased LVEDD and LVESD, and increased %FS in both groups. Interestingly, the effect was more pronounced in KO-MI group versus WT-MI (P < 0.01). MMP inhibition significantly decreased post-MI LV dilation in KO-MI group as measured by Langendorff-perfusion analysis. MMP inhibition improved LV developed pressures in both MI groups. However, the improvement was significantly higher in KO-MI group versus WT-MI (P < 0.05). MMP inhibition increased heart weight-to-body weight ratio, myocyte cross-sectional area, fibrosis and septal wall thickness only in KO-MI. Percent apoptotic myocytes in the non-infarct area was not different between the treatment groups. Expression and activity of MMP-2 and MMP-9 in the non-infarct area was higher in KO-MI group 3 days post-MI. MMP inhibition reduced MMP-2 activity in KO-MI with no effect on the expression of TIMP-2 and TIMP-4 14 days post-MI. Thus, activation of MMPs contributes to reduced fibrosis and LV dysfunction in mice lacking OPN.  相似文献   
67.
Given the inherent difficulties in investigating the mechanisms of tumor progression in vivo, cell-based assays such as the soft agar colony formation assay (hereafter called soft agar assay), which measures the ability of cells to proliferate in semi-solid matrices, remain a hallmark of cancer research. A key advantage of this technique over conventional 2D monolayer or 3D spheroid cell culture assays is the close mimicry of the 3D cellular environment to that seen in vivo. Importantly, the soft agar assay also provides an ideal tool to rigorously test the effects of novel compounds or treatment conditions on cell proliferation and migration. Additionally, this assay enables the quantitative assessment of cell transformation potential within the context of genetic perturbations. We recently identified peptidylarginine deiminase 2 (PADI2) as a potential breast cancer biomarker and therapeutic target. Here we highlight the utility of the soft agar assay for preclinical anti-cancer studies by testing the effects of the PADI inhibitor, BB-Cl-amidine (BB-CLA), on the tumorigenicity of human ductal carcinoma in situ (MCF10DCIS) cells.  相似文献   
68.
Obesity-induced inflammation in visceral adipose tissue (VAT) is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT) inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre + Myd88 fl/fl vs. control Myd88 fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre + Myd88 fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre + Myd88 fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre + Myd88 fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis.  相似文献   
69.
N-1-Naphthylphthalmic acid (NPA)-binding protein is a plasmalemma (PM) protein involved in the control of cellular auxin efflux. We re-evaluated the spatial relationship of this protein with the PM of zucchini (Cucurbita pepo L.) hypocotyls. First, Triton X-114 partitioning indicated that the NPA-binding protein was more hydrophobic than most PM proteins. Second, the NPA-binding activity was found to be resistant to proteolytic digestion in membranes. Maximum concentrations of binding sites for NPA were virtually identical in untreated and proteinase K-treated PMs: 19.2 and 20.6 pmol [3H]NPA bound/mg protein, respectively. The insensitivity of the NPA-binding protein was not due to its presence inside tightly sealed vesicles or due to lack of protease activity in the conditions tested. This protein could be made sensitive to proteolytic degradation upon solubilization by 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate in the presence of sodium molybdate. Proteinase K treatment decreased the concentration of binding sites to 0.84 pmol [3H]NPA bound/mg protein from 9.2 for untreated, solubilized PM. Third, this activity could not be solubilized by chaotropic agents or sodium carbonate treatment of intact PM. This study indicates that the NPA-binding protein may be an integral membrane protein and contradicts previously reported findings that suggested that this protein was peripheral to the PM.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号