首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   8篇
  2023年   2篇
  2022年   5篇
  2021年   2篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   9篇
  2014年   8篇
  2013年   6篇
  2012年   9篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   8篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   5篇
  1996年   1篇
  1995年   1篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1985年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有117条查询结果,搜索用时 866 毫秒
31.
The influence of mounting and ejaculation on the FSH, LH and testosterone secretory patterns was studied in three azoospermic (including one 61 XXY; one Sertoli-cell-only Syndrome and one secretory-excretory azoospermic) and three control normospermic bulls. Sexual activity did not result in any alteration in the release of these three hormones. There was no difference between the secretory patterns before and after ejaculation in the two classes of bulls. One of the main features was the elevated concentrations of FSH in the bull with Klinefelter's Syndrome, but the mounting test did not result in any significant effect on this concentration. The LH and testosterone patterns were similar for all individuals. From these results, it can be concluded that the mounting test applied under these experimental conditions had no effect on the pituitary-gonadal axis in bulls characterized by either impairment of spermatogenesis or normal semen production.  相似文献   
32.
33.
Streptococcus pneumoniae accounts for more deaths worldwide than any other single pathogen through diverse disease manifestations including pneumonia, sepsis and meningitis. Life-threatening acute cardiac complications are more common in pneumococcal infection compared to other bacterial infections. Distinctively, these arise despite effective antibiotic therapy. Here, we describe a novel mechanism of myocardial injury, which is triggered and sustained by circulating pneumolysin (PLY). Using a mouse model of invasive pneumococcal disease (IPD), we demonstrate that wild type PLY-expressing pneumococci but not PLY-deficient mutants induced elevation of circulating cardiac troponins (cTns), well-recognized biomarkers of cardiac injury. Furthermore, elevated cTn levels linearly correlated with pneumococcal blood counts (r=0.688, p=0.001) and levels were significantly higher in non-surviving than in surviving mice. These cTn levels were significantly reduced by administration of PLY-sequestering liposomes. Intravenous injection of purified PLY, but not a non-pore forming mutant (PdB), induced substantial increase in cardiac troponins to suggest that the pore-forming activity of circulating PLY is essential for myocardial injury in vivo. Purified PLY and PLY-expressing pneumococci also caused myocardial inflammatory changes but apoptosis was not detected. Exposure of cultured cardiomyocytes to PLY-expressing pneumococci caused dose-dependent cardiomyocyte contractile dysfunction and death, which was exacerbated by further PLY release following antibiotic treatment. We found that high PLY doses induced extensive cardiomyocyte lysis, but more interestingly, sub-lytic PLY concentrations triggered profound calcium influx and overload with subsequent membrane depolarization and progressive reduction in intracellular calcium transient amplitude, a key determinant of contractile force. This was coupled to activation of signalling pathways commonly associated with cardiac dysfunction in clinical and experimental sepsis and ultimately resulted in depressed cardiomyocyte contractile performance along with rhythm disturbance. Our study proposes a detailed molecular mechanism of pneumococcal toxin-induced cardiac injury and highlights the major translational potential of targeting circulating PLY to protect against cardiac complications during pneumococcal infections.  相似文献   
34.
35.
Superantigens (SAgs) play an important role in the pathogenesis of severe invasive infections caused by Group A Streptococcus (GAS). We had shown earlier that the expression of streptococcal cysteine protease SpeB results in partial loss of the immune-stimulating activity of the native secreted GAS SAgs, namely the streptococcal pyrogenic exotoxins produced by the globally disseminated M1T1 GAS strain, associated with invasive infections worldwide. In this study, we examined the susceptibility of each of the M1T1 recombinant SAgs to degradation by rSpeB. Whereas SmeZ was degraded completely within 30 min of incubation with rSpeB, SpeG, and SpeA were more resistant and SpeJ was completely unaffected by the proteolytic effects of this protease. Proteomic analyses demonstrated that the order of susceptibility of the M1T1 SAgs to SpeB proteolysis is unaltered when they are present in a mixture that reflects their native physiological status. As expected, the degradation of SmeZ abolished its immune stimulatory activity. In silico sequence disorder and structural analyses revealed that SmeZ, unlike the three other structurally related SAgs, possesses a putative SpeB cleavage site within an area of the protein likely to be exposed to the surface. The study provides evidence for the effect of subtle structural differences between highly similar SAgs on their biological activity.  相似文献   
36.
37.
Populations of Listeria monocytogenes strains isolated in Belgium from cheese and from patients with listeriosis were characterised by randomly amplified polymorphic DNA (RAPD) analysis using two 10-mers primers (OPA-04 and OPA-13). High discrimination levels were obtained with each of these primers alone (discrimination indices (DI) of 0.899 and 0.935 for OPA13 and OPA04, respectively) or in combination (DI of 0.960). The clustering of strains obtained by RAPD was compared with a clustering previously made using serotyping and esterase typing. RAPD allowed the subdivision of each serovar cluster and of most of the clusters determined by the polymorphism of the bacterial esterases. Our analysis indicates that the population of strains of L. monocytogenes found in cheese differs from the one isolated from patients with listeriosis during the same period.  相似文献   
38.
TMEM165 deficiency leads to skeletal disorder characterized by major skeletal dysplasia and pronounced dwarfism. However, the molecular mechanisms involved have not been fully understood. Here, we uncover that TMEM165 deficiency impairs the synthesis of proteoglycans by producing a blockage in the elongation of chondroitin-and heparan-sulfate glycosaminoglycan chains leading to the synthesis of proteoglycans with shorter glycosaminoglycan chains. We demonstrated that the blockage in elongation of glycosaminoglycan chains is not due to defect in the Golgi elongating enzymes but rather to availability of the co-factor Mn2+. Supplementation of cell with Mn2+ rescue the elongation process, confirming a role of TMEM165 in Mn2+ Golgi homeostasis. Additionally, we showed that TMEM165 deficiency functionally impairs TGFβ and BMP signaling pathways in chondrocytes and in fibroblast cells of TMEM165 deficient patients. Finally, we found that loss of TMEM165 impairs chondrogenic differentiation by accelerating the timing of Ihh expression and promoting early chondrocyte maturation and hypertrophy. Collectively, our results indicate that TMEM165 plays an important role in proteoglycan synthesis and underline the critical role of glycosaminoglycan chains structure in the regulation of chondrogenesis. Our data also suggest that Mn2+ supplementation may be a promising therapeutic strategy in the treatment of TMEM165 deficient patients.Subject terms: Glycobiology, Diseases  相似文献   
39.
A globally disseminated strain of M1T1 group A Streptococcus (GAS) has been associated with severe infections in humans including necrotizing fasciitis and toxic shock syndrome. Recent clinicoepidemiologic data showed a striking inverse relationship between disease severity and the degree to which M1T1 GAS express the streptococcal cysteine protease, SpeB. Electrophoretic 2-D gel analysis of the secreted M1T1 proteome, coupled with MALDI-TOF mass spectroscopy, revealed that expression of active SpeB caused the degradation of the vast majority of secreted GAS proteins, including several known virulence factors. Injection of a SpeB+/SpeA- M1T1 GAS strain into a murine subcutanous chamber model of infection selected for a stable phase-shift to a SpeB-/SpeA+ phenotype that expressed a full repertoire of secreted proteins and possessed enhanced lymphocyte-stimulating capacity. The proteome of the SpeB-in vivo phase-shift form closely matched the proteome of an isogenic speB gene deletion mutant of the original M1T1 isolate. The absence or the inactivation of SpeB allowed proteomic identification of proteins in this M1T1 clone that are not present in the previously sequenced M1 genome including SpeA and another bacteriophage-encoded novel streptodornase allele. Further proteomic analysis of the M1T1 SpeB+ and SpeB- phase-shift forms in the presence of a cysteine protease inhibitor demonstrated differences in the expression of several proteins, including the in vivo upregulation of SpeA, which occurred independently of SpeB inactivation.  相似文献   
40.
The pathogen group A Streptococcus (GAS) produces a wide spectrum of infections including necrotizing fasciitis (NF). Streptolysin S (SLS) produces the hallmark beta-haemolytic phenotype produced by GAS. The nine-gene GAS locus (sagA-sagI) resembling a bacteriocin biosynthetic operon is necessary and sufficient for SLS production. Using precise, in-frame allelic exchange mutagenesis and single-gene complementation, we show sagA, sagB, sagC, sagD, sagE, sagF and sagG are each individually required for SLS production, and that sagE may further serve an immunity function. Limited site-directed mutagenesis of specific amino acids in the SagA prepropeptide supports the designation of SLS as a bacteriocin-like toxin. No significant pleotrophic effects of sagA deletion were observed on M protein, capsule or cysteine protease production. In a murine model of NF, the SLS-negative M1T1 GAS mutant was markedly diminished in its ability to produce necrotic skin ulcers and spread to the systemic circulation. The SLS toxin impaired phagocytic clearance and promoted epithelial cell cytotoxicity, the latter phenotype being enhanced by the effects of M protein and streptolysin O. We conclude that all genetic components of the sag operon are required for expression of functional SLS, an important virulence factor in the pathogenesis of invasive M1T1 GAS infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号