首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   3篇
  2023年   1篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   1篇
  2017年   5篇
  2016年   6篇
  2014年   6篇
  2013年   7篇
  2012年   6篇
  2011年   10篇
  2010年   1篇
  2009年   1篇
  2008年   4篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2001年   3篇
  2000年   3篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
排序方式: 共有88条查询结果,搜索用时 859 毫秒
41.
Vascular interstitial cells (VICs) are non‐contractile cells with filopodia previously described in healthy blood vessels of rodents and their function remains unknown. The objective of this study was to identify VICs in human arteries and to ascertain their role. VICs were identified in the wall of human gastro‐omental arteries using transmission electron microscopy. Isolated VICs showed ability to form new and elongate existing filopodia and actively change body shape. Most importantly sprouting VICs were also observed in cell dispersal. RT‐PCR performed on separately collected contractile vascular smooth muscle cells (VSMCs) and VICs showed that both cell types expressed the gene for smooth muscle myosin heavy chain (SM‐MHC). Immunofluorescent labelling showed that both VSMCs and VICs had similar fluorescence for SM‐MHC and αSM‐actin, VICs, however, had significantly lower fluorescence for smoothelin, myosin light chain kinase, h‐calponin and SM22α. It was also found that VICs do not have cytoskeleton as rigid as in contractile VSMCs. VICs express number of VSMC‐specific proteins and display features of phenotypically modulated VSMCs with increased migratory abilities. VICs, therefore represent resident phenotypically modulated VSMCs that are present in human arteries under normal physiological conditions.  相似文献   
42.
Content: Identification of panel of SEREX-defined antigens for breast cancer autoantibodies profile detection.

Objective: To create panel of antigens that can differentiate breast cancer patients and healthy individuals.

Methods: SEREX (serological analysis of cDNA expression libraries) method, ELISA (enzyme-linked immunosorbent assay), qPCR (quantitative polymerase chain reaction).

Results: In large-scale screening of 16 SEREX-antigens by sera of breast cancer patients and healthy donors, a combination of six antigens (RAD50, PARD3, SPP1, SAP30BP, NY-BR-62 and NY-CO-58) was identified, which can differentiate breast cancer patients and healthy donors with 70% sensitivity and 91% specificity. Elevated mRNA expression of SPP1 gene was revealed in breast tumors (2–7-fold) that correlated with SPP1 antigen immunoreactivity in autologous patients’ sera.

Conclusions: The new panel of six SEREX-antigens was proposed, which enables creation of serological assay for breast cancer diagnostics and/or prognosis.  相似文献   

43.
44.
Magnetic twisting cytometry (MTC) (Wang N, Butler JP, and Ingber DE, Science 260: 1124-1127, 1993) is a useful technique for probing cell micromechanics. The technique is based on twisting ligand-coated magnetic microbeads bound to membrane receptors and measuring the resulting bead rotation with a magnetometer. Owing to the low signal-to-noise ratio, however, the magnetic signal must be modulated, which is accomplished by spinning the sample at approximately 10 Hz. Present demodulation approaches limit the MTC range to frequencies <0.5 Hz. We propose a novel demodulation algorithm to expand the frequency range of MTC measurements to higher frequencies. The algorithm is based on coherent demodulation in the frequency domain, and its frequency range is limited only by the dynamic response of the magnetometer. Using the new algorithm, we measured the complex modulus of elasticity (G*) of cultured human bronchial epithelial cells (BEAS-2B) from 0.03 to 16 Hz. Cells were cultured in supplemented RPMI medium, and ferromagnetic beads (approximately 5 microm) coated with an RGD peptide were bound to the cell membrane. Both the storage (G', real part of G*) and loss (G", imaginary part of G*) moduli increased with frequency as omega(alpha) (2 pi x frequency) with alpha approximately equal to 1/4. The ratio G"/G' was approximately 0.5 and varied little with frequency. Thus the cells exhibited a predominantly elastic behavior with a weak power law of frequency and a nearly constant proportion of elastic vs. frictional stresses, implying that the mechanical behavior conformed to the so-called structural damping (or constant-phase) law (Maksym GN, Fabry B, Butler JP, Navajas D, Tschumperlin DJ, LaPorte JD, and Fredberg JJ, J Appl Physiol 89: 1619-1632, 2000). We conclude that frequency domain demodulation dramatically increases the frequency range that can be probed with MTC and reveals that the mechanics of these cells conforms to constant-phase behavior over a range of frequencies approaching three decades.  相似文献   
45.
The rational modification of the actinomycetes genomes has a variety of applications in research, medicine, and biotechnology. The use of site-specific recombinases allows generation of multiple mutations, large DNA deletions, integrations, and inversions and may lead to significant progress in all of these fields. Despite their huge potential, site-specific recombinase-based technologies have primarily been used for simple marker removal from a chromosome. In this review, we summarise the site-specific recombination approaches for genome engineering in various actinomycetes.  相似文献   
46.
The transfer of unfractionated DBA/2J (DBA) splenocytes into B6D2F(1) (DBA → F(1)) mice results in greater donor CD4 T cell engraftment in females at day 14 that persists long-term and mediates greater female lupus-like renal disease. Although donor CD8 T cells have no demonstrated role in lupus pathogenesis in this model, we recently observed that depletion of donor CD8 T cells prior to transfer eliminates sex-based differences in renal disease long-term. In this study, we demonstrate that greater day 14 female donor CD4 engraftment is also critically dependent on donor CD8 T cells. Male DBA → F(1) mice exhibit stronger CD8-dependent day 8-10 graft-versus-host (GVH) and counter-regulatory host-versus-graft (HVG) responses, followed by stronger homeostatic contraction (days 10-12). The weaker day 10-12 GVH and HVG in females are followed by persistent donor T cell activation and increasing proliferation, expansion, and cytokine production from days 12 to 14. Lastly, greater female day 14 donor T cell engraftment, activation, and cytokine production were lost with in vivo IFN-γ neutralization from days 6 to 14. We conclude the following: 1) donor CD8 T cells enhance day 10 proliferation of donor CD4 T cells in both sexes; and 2) a weaker GVH/HVG in females allows prolonged survival of donor CD4 and CD8 T cells, allowing persistent activation. These results support the novel conclusion that sex-based differences in suboptimal donor CD8 CTL activation are critical for shaping sex-based differences in donor CD4 T cell engraftment at 2 wk and lupus-like disease long-term.  相似文献   
47.
PbS quantum dots (QDs) of different sizes capped with short (NH4)3AsS3 inorganic ligands are produced via ligand exchange processes from oleate‐capped PbS QDs. The solid‐state photophysical properties of the control organic‐capped and the inorganic‐ligand‐capped QDs are investigated to determine their potential for optoelectronic applications. Ultrafast transient transmission shows that in the oleate‐capped QDs, carrier recombination at sub‐nanosecond scales occurs via Auger recombination, traps, and surface states. At longer times, intense signals associated with radiative recombination are obtained. After ligand exchange, the QDs become decorated with (NH4)3AsS3 complexes and relaxation is dominated by efficient carrier transfer to the ligand states on timescales as fast as ≈2 ps, which competes with carrier thermalization to the QD band edge states. Recombination channels present in the oleate‐capped QDs, such as radiative and Auger recombination, appear quenched in the inorganic‐capped QDs. Evidence of efficient carrier trapping at shallow ligand states, which appears more intense under excitation above the (NH4)3AsS3 gap, is provided. A detailed band diagram of the various relaxation and recombination processes is proposed that comprehensively describes the photophysics of the QD systems studied.  相似文献   
48.
49.
Bioconjugated quantum dots (QDs) provide a new class of biological labels for evaluating biomolecular signatures (biomarkers) on intact cells and tissue specimens. In particular, the use of multicolor QD probes in immunohistochemistry is considered one of the most important and clinically relevant applications. At present, however, clinical applications of QD-based immunohistochemistry have achieved only limited success. A major bottleneck is the lack of robust protocols to define the key parameters and steps. Here, we describe our recent experience, preliminary results and detailed protocols for QD-antibody conjugation, tissue specimen preparation, multicolor QD staining, image processing and biomarker quantification. The results demonstrate that bioconjugated QDs can be used for multiplexed profiling of molecular biomarkers, and ultimately for correlation with disease progression and response to therapy. In general, QD bioconjugation is completed within 1 day, and multiplexed molecular profiling takes 1-3 days depending on the number of biomarkers and QD probes used.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号