首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   7篇
  2023年   2篇
  2022年   2篇
  2021年   5篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   7篇
  2014年   7篇
  2013年   6篇
  2012年   13篇
  2011年   14篇
  2010年   9篇
  2009年   9篇
  2008年   6篇
  2007年   7篇
  2006年   5篇
  2005年   7篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
11.
Self-assembling protein nanocapsules can be engineered for various bionanotechnology applications. Using the dodecahedral scaffold of the E2 subunit from pyruvate dehydrogenase, we introduced non-native surface cysteines for site-directed functionalization. The modified nanoparticle's structural, assembly, and thermostability properties were comparable to the wild-type scaffold (E2-WT), and after conjugation of poly(ethylene glycol) (PEG) to these cysteines, the nanoparticle remained intact and stable up to 79.7 ± 1.8 °C. PEGylation of particles reduced uptake by human monocyte-derived macrophages and MDA-MB-231 breast cancer cells, with decreased uptake as PEG chain length is increased. In vitro C4-depletion and C5a-production assays yielded 97.6 ± 10.8% serum C4 remaining and 40.1 ± 6.0 ng/mL C5a for E2-WT, demonstrating that complement activation is weak for non-PEGylated E2 nanoparticles. Conjugation of PEG to these particles moderately increased complement response to give 79.7 ± 6.0% C4 remaining and 87.6 ± 10.1 ng/mL C5a. Our results demonstrate that PEGylation of the E2 protein nanocapsules can modulate cellular uptake and induce low levels of complement activation, likely via the classical/lectin pathways.  相似文献   
12.
Abnormal fibrillization of amyloidogenic peptides/proteins has been linked to various neurodegenerative diseases such as Alzheimer's and Parkinson's disease as well as with type‐II diabetes mellitus. The kinetics of protein fibrillization is commonly studied by using a fluorescent dye Thioflavin T (ThT) that binds to protein fibrils and exerts increased fluorescence intensity in bound state. Recently, it has been demonstrated that several low‐molecular weight compounds like Basic Blue 41, Basic Blue 12, Azure C, and Tannic acid interfere with the fluorescence of ThT bound to Alzheimers' amyloid‐β fibrils and cause false positive results during the screening of fibrillization inhibitors. In the current study, we demonstrated that the same selected substances also decrease the fluorescence signal of ThT bound to insulin fibrils already at submicromolar or micromolar concentrations. Kinetic experiments show that unlike to true inhibitors, these compounds did neither decrease the fibrillization rate nor increase the lag‐period. Absence of soluble insulin in the end of the experiment confirmed that these compounds do not disaggregate the insulin fibrils and, thus, are not fibrillization inhibitors at concentrations studied. Our results show that interference with ThT test is a general phenomenon and more attention has to be paid to interpretation of kinetic results of protein fibrillization obtained by using fluorescent dyes. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
13.
14.
15.
Despite their ability to interbreed and produce fertile offspring,there is continued disagreement about the genetic relationshipof the domestic horse (Equus caballus) to its endangered wildrelative, Przewalski's horse (Equus przewalskii). Analyses havediffered as to whether or not Przewalski's horse is placed phylogeneticallyas a separate sister group to domestic horses. Because Przewalski'shorse and domestic horse are so closely related, genetic datacan also be used to infer domestication-specific differencesbetween the two. To investigate the genetic relationship ofPrzewalski's horse to the domestic horse and to address whetherevolution of the domestic horse is driven by males or females,five homologous introns (a total of 3 kb) were sequenced onthe X and Y chromosomes in two Przewalski's horses and threebreeds of domestic horses: Arabian horse, Mongolian domestichorse, and Dartmoor pony. Five autosomal introns (a total of6 kb) were sequenced for these horses as well. The sequencesof sex chromosomal and autosomal introns were used to determinenucleotide diversity and the forces driving evolution in thesespecies. As a result, X chromosomal and autosomal data do notplace Przewalski's horses in a separate clade within phylogenetictrees for horses, suggesting a close relationship between domesticand Przewalski's horses. It was also found that there was alack of nucleotide diversity on the Y chromosome and highernucleotide diversity than expected on the X chromosome in domestichorses as compared with the Y chromosome and autosomes. Thissupports the hypothesis that very few male horses along withnumerous female horses founded the various domestic horse breeds.Patterns of nucleotide diversity among different types of chromosomeswere distinct for Przewalski's in contrast to domestic horses,supporting unique evolutionary histories of the two species.  相似文献   
16.
Amyloid β‐peptide (Aβ) accumulation leads to neurodegeneration and Alzheimer disease; however, amyloid metabolism is a dynamic process and enzymic mechanisms exist for Aβ removal. Considerable controversy surrounds whether the intracellular domain of the amyloid precursor protein (AICD) regulates expression of the Aβ‐degrading metalloprotease, neprilysin (NEP). By comparing two neuroblastoma cell lines differing substantially in NEP expression, we show by chromatin immunoprecipitation (ChIP) that AICD is bound directly to the NEP promoter in high NEP‐expresser (NB7) cells but not in low‐expresser (SH‐SY5Y) cells. The methylation status of the NEP promoter does not regulate expression in these cells, whereas the histone deacetylase inhibitors trichostatin A and valproate partly restore NEP expression and activity in SH‐SY5Y cells. ChIP analysis also reveals AICD binding to the NEP promoter in rat primary neurons but not in HUVEC cells. Chromatin remodelling of crucial Alzheimer disease‐related genes by valproate could provide a new therapeutic strategy.  相似文献   
17.
AIM: To investigate the role of protein tyrosine phosphorylation in gastric wound formation and repair following ulceration.METHODS: Gastric lesions were induced in rats using restraint cold stress. To investigate the effect of oxidative and nitrosative cell stress on tyrosine phosphorylation during wound repair, total activity of protein tyrosine kinase (PTK), protein tyrosine phosphatase (PTP), antioxidant enzymes, nitric oxide synthase (NOS), 2’,5’-oligoadenylate synthetase, hydroxyl radical and zinc levels were assayed in parallel.RESULTS: Ulcer provocation induced an immediate decrease in tyrosine kinase (40% in plasma membranes and 56% in cytosol, P < 0.05) and phosphatase activity (threefold in plasma membranes and 3.3-fold in cytosol), followed by 2.3-2.4-fold decrease (P < 0.05) in protein phosphotyrosine content in the gastric mucosa. Ulceration induced no immediate change in superoxide dismutase (SOD) activity, 30% increase (P < 0.05) in catalase activity, 2.3-fold inhibition (P < 0.05) of glutathione peroxidase, 3.3-fold increase (P < 0.05) in hydroxyl radical content, and 2.3-fold decrease (P < 0.05) in zinc level in gastric mucosa. NOS activity was three times higher in gastric mucosa cells after cold stress. Following ulceration, PTK activity increased in plasma membranes and reached a maximum on day 4 after stress (twofold increase, P < 0.05), but remained inhibited (1.6-3-fold decrease on days 3, 4 and 5, P < 0.05) in the cytosol. Tyrosine phosphatases remained inhibited both in membranes and cytosol (1.5-2.4-fold, P < 0.05). NOS activity remained increased on days 1, 2 and 3 (3.8-, 2.6-, 2.2-fold, respectively, P < 0.05). Activity of SOD increased 1.6 times (P < 0.05) days 4 and 5 after stress. Catalase activity normalized after day 2. Glutathione peroxidase activity and zinc level decreased (3.3- and 2-fold, respectively, P < 0.05) on the last day. Activity of 2’,5’-oligoadenylate synthethase increased 2.8-fold (P < 0.05) at the beginning, and 1.6-2.3-fold (P < 0.05) during ulcer recuperation, and normalized on day 5, consistent with slowing of inflammation processes.CONCLUSION: These studies show diverse changes in total tyrosine kinase activity in gastric mucosa during the recovery process. Oxidative and nitrosative stress during lesion formation might lead to the observed reduction in tyrosine phosphorylation during ulceration.  相似文献   
18.
PhnP is a phosphodiesterase that plays an important role within the bacterial carbon-phosphorus lyase (CP-lyase) pathway by recycling a "dead-end" intermediate, 5-phospho-α-d-ribosyl 1,2-cyclic phosphate, that is formed during organophosphonate catabolism. As a member of the metallo-β-lactamase superfamily, PhnP is most homologous in sequence and structure to tRNase Z phosphodiesterases. X-ray structural analysis of PhnP complexed with orthovanadate to 1.5 ? resolution revealed this inhibitor bound in a tetrahedral geometry by the two catalytic manganese ions and the putative general acid residue H200. Guided by this structure, we probed the contributions of first- and second-sphere active site residues to catalysis and metal ion binding by site-directed mutagenesis, kinetic analysis, and ICP-MS. Alteration of H200 to alanine resulted in a 6-33-fold decrease in k(cat)/K(M) with substituted methyl phenylphosphate diesters with leaving group pK(a) values ranging from 4 to 8.4. With bis(p-nitrophenyl)phosphate as a substrate, there was a 10-fold decrease in k(cat)/K(M), primarily the result of a large increase in K(M). Moreover, the nickel ion-activated H200A PhnP displayed a bell-shaped pH dependence for k(cat)/K(M) with pK(a) values (pK(a1) = 6.3; pK(a2) = 7.8) that were comparable to those of the wild-type enzyme (pK(a1) = 6.5; pK(a2) = 7.8). Such modest effects are counter to what is expected for a general acid catalyst and suggest an alternate role for H200 in this enzyme. A Br?nsted analysis of the PhnP reaction with a series of substituted phenyl methyl phosphate esters yielded a linear correlation, a β(lg) of -1.06 ± 0.1, and a Leffler α value of 0.61, consistent with a synchronous transition state for phosphoryl transfer. On the basis of these data, we propose a mechanism for PhnP.  相似文献   
19.
In many species the mutation rate is higher in males than in females, a phenomenon denoted as male mutation bias. This is often observed in animals where males produce many more sperm than females produce eggs, and is thought to result from differences in the number of replication-associated mutations accumulated in each sex. Thus, studies of male mutation bias have the capacity to reveal information about the replication-dependent or replication-independent nature of different mutations. The availability of whole genome sequences for many species, as well as for multiple individuals within a species, has opened the door to studying factors, both sequence-specific and those acting on the genome globally, that affect differences in mutation rates between males and females. Here, we assess the advantages that genomic sequences provide for studies of male mutation bias and general mutation mechanisms, discuss major challenges left unresolved, and speculate about the direction of future studies.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号