首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7930篇
  免费   422篇
  国内免费   11篇
  2023年   15篇
  2022年   31篇
  2021年   76篇
  2020年   45篇
  2019年   70篇
  2018年   108篇
  2017年   86篇
  2016年   115篇
  2015年   196篇
  2014年   263篇
  2013年   546篇
  2012年   444篇
  2011年   471篇
  2010年   289篇
  2009年   302篇
  2008年   490篇
  2007年   481篇
  2006年   461篇
  2005年   526篇
  2004年   529篇
  2003年   491篇
  2002年   446篇
  2001年   107篇
  2000年   100篇
  1999年   96篇
  1998年   118篇
  1997年   85篇
  1996年   92篇
  1995年   88篇
  1994年   59篇
  1993年   74篇
  1992年   85篇
  1991年   70篇
  1990年   54篇
  1989年   68篇
  1988年   42篇
  1987年   66篇
  1986年   56篇
  1985年   60篇
  1984年   53篇
  1983年   58篇
  1982年   61篇
  1981年   50篇
  1980年   45篇
  1979年   52篇
  1978年   46篇
  1977年   47篇
  1976年   41篇
  1975年   21篇
  1974年   17篇
排序方式: 共有8363条查询结果,搜索用时 31 毫秒
61.
The arrangement and function of the redox centers of the mammalianbc 1 complex is described on the basis of structural data derived from amino acid sequence studies and secondary structure predictions and on the basis of functional studies (i.e., EPR data, inhibitor studies, and kinetic experiments). Two ubiquinone reaction centers do exist—a QH2 oxidation center situated at the outer, cytosolic surface of the cristae membrane (Q0 center), and a Q reduction center (Q i center) situated more to the inner surface of the cristae membrane. The Q0 center is formed by theb-566 domain of cytochromeb, the FeS protein, and maybe an additional small subunit, whereas the Q i center is formed by theb-562 domain of cytochromeb and presumably the 13.4kDa protein (QP-C). The Q binding proteins are proposed to be protein subunits of the Q reaction centers of various multiprotein complexes. The path of electron flow branches at the Q0 center, half of the electrons flowing via the high-potential cytochrome chain to oxygen and half of the electrons cycling back into the Q pool via the cytochromeb path connecting the two Q reaction centers. During oxidation of QH2, 2H+ are released to the cytosolic space and during reduction of Q, 2H+ are taken up from the matrix side, resulting in a net transport across the membrane of 2H+ per e flown from QH2 to cytochromec, the H+ being transported across the membrane as H (H+ + e) by the mobile carrier Q. The authors correct their earlier view of cytochromeb functioning as a H+ pump, proposing that the redox-linkedpK changes of the acidic groups of cytochromeb are involved in the protonation/deprotonation processes taking place during the reduction and oxidation of Q. The reviewers stress that cytochromeb is in equilibrium with the Q pool via the Q i center, but not via the Q0 center. Their view of the mechanisms taking place at the reductase is a Q cycle linked to a Q-pool where cytochromeb is acting as an electron pump.  相似文献   
62.
63.
The oxidation of 4,5-diaminopyrimidin-6(1H)-one, 5,6,7,8-tetrahydropteridin-4(3H)-one, its 6-methyl and cis-6,7-dimethyl derivatives, and 6-methyl- and cis-6-7-dimethyl-5,6,7,8-tetrahydropterins, by horseradish peroxidase/H2O2 is enzymic and follows Michaelis-Menten kinetics, and its Km and kcat. values were determined. This oxidation of 5,6,7,8-tetrahydropterins produces quinonoid dihydropterins of established structure, and they are known to be specific substrates for dihydropteridine reductase. By analogy the peroxidase/H2O2 oxidation of the 5,6,7,8-tetrahydropteridin-4(3H)-ones should produce similar quinonoid dihydro species. The quinonoid species derived from 5,6,7,8-tetrahydropteridin-4(3H)-one and its 6-methyl and cis-6,7-dimethyl derivatives are shown to be viable substrates for human brain dihydropteridine reductase, and apparent Km and Vmax. values are reported.  相似文献   
64.
4-Aminobutyraldehyde (ABAL) has been shown to cross the blood-brain barrier and to be converted rapidly to -aminobutyric acid (GABA) in various regions of the brain. In this paper, the formation of GABA from ABAL was studied with striatum that had suffered a lesion to GABA synthesis via glutamic acid decarboxylase (GAD). The GABA formation from ABAL was invariably observed in striatum in which GAD was severely inhibited by semicarbazide or kainic acid. Thus, this is another pathway for GABA formation.  相似文献   
65.
Cycling of soil carbon in the first year after a clear-felling was compared with that before the felling in a Japanese red pine forest in Hiroshima Prefecture, west Japan. The daily mean temperature at the soil surface in summer was increased after the felling in comparison to that before felling, and the water content of both the A0 layer and the surface mineral soil was decreased due to the loss of the forest canopy. The rate of weight loss of the A0 layer was reduced after felling. However, accumulation of the A0 layer rapidly decreased because of the lack of litter supply to the forest floor. Low soil respiration after felling was mainly caused by the cessation of root respiration. Analysis of annual soil carbon cycling was then conducted using a compartment model. The relative decomposition rate of the A0 layer decreased whereas that of humus and dead roots in mineral soil increased to some extent after felling. The accumulation of carbon in mineral soil, however, increased slightly due to the supply of humus from roots killed by the felling.  相似文献   
66.
Five species including two new species,Araucarioxylon kiiense Ogura,Taxodioxylon albertense (Penhal.) Shimakura,Cupressinoxylon cryptomerioides Stopes,Xenoxylon watarianum sp. nov. andCedroxylon shimakurae sp. nov., were described from the Upper Cretaceous (Late Turonian-Santonian) of southern Saghalien. Consecutive number from the previous paper (Nishida and Nishida, 1985). Contributions from the Laboratory of Phylogenetic Botany, Chiba University No. 100. Supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture No. 59540441.  相似文献   
67.
68.
The effect of polyamines on the in vitro and in vivo synthesis and degradation on guanosine 5'-diphosphate 3'-diphosphate (ppGpp) has been studied in Escherichia coli. The presence of 2 mM spermidine lowered the optimal Mg2+ concentration for ppGpp formation from 17 mM to 11 mM. The formation of ppGpp in the presence of 2 mM spermidine and 11 mM Mg2+ was about 15% greater than that in the presence of 17 mM Mg2+. At a concentration of less than 11 mM Mg2+, spermidine was found to stimulate ppGpp formation greatly. Putrescine did not cause any effect. When a polyamine-requiring mutant of E. coli (EWH319) was starved for an amino acid by the addition of valine, spermidine stimulated ppGpp formation. The degradation of ppGpp was not influenced significantly by polyamines.  相似文献   
69.
Mitochondria were isolated from mesophyll protoplasts and bundlesheath protoplasts or strands which were obtained by enzymaticdigestion of six C4 species: Zea mays, Sorghum bicolor, Panicummiliaceum, Panicum capillare, Panicum maximum and Chloris gayana,representative of three C4 types. Photorespiratory glycine oxidationand related enzyme activities of mesophyll and bundle sheathmitochondria were compared. Mesophyll mitochondria showed good P/O ratios with malate andsuccinate as substrate but lacked the ability to oxidize glycine.On the other hand, mitochondria isolated from bundle sheathprotoplasts of P. miliaceum and bundle sheath strands of Z.mays possessed glycine oxidation activity similar to that ofmitochondria from C3 plant leaves. The two enzymes involvedin glycine metabolism in mitochondria, serine hydroxymethyltransferaseand glycine decarboxylase, were also assayed in the mitochondriaof the two cell types. The activities of the two enzymes inbundle sheath mitochondria were in the range found in C3 mitochondria.In contrast, the activities in mesophyll mitochondria were eithernot detectable or far lower than those in bundle sheath mitochondriaand ascribed to contaminating bundle sheath mitochondria. The present results indicate the deficiency of a complete glycineoxidation system in mesophyll mitochondria and also a differentiationbetween mesophyll and bundle sheath cells of C4 plants withrespect to the photorespiratory activities of the mitochondria. (Received June 8, 1983; Accepted August 29, 1983)  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号