首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6655篇
  免费   308篇
  国内免费   8篇
  6971篇
  2023年   13篇
  2022年   31篇
  2021年   66篇
  2020年   41篇
  2019年   60篇
  2018年   93篇
  2017年   82篇
  2016年   106篇
  2015年   185篇
  2014年   240篇
  2013年   500篇
  2012年   398篇
  2011年   406篇
  2010年   257篇
  2009年   272篇
  2008年   449篇
  2007年   431篇
  2006年   415篇
  2005年   473篇
  2004年   462篇
  2003年   433篇
  2002年   394篇
  2001年   50篇
  2000年   53篇
  1999年   58篇
  1998年   95篇
  1997年   71篇
  1996年   79篇
  1995年   79篇
  1994年   50篇
  1993年   61篇
  1992年   52篇
  1991年   46篇
  1990年   31篇
  1989年   36篇
  1988年   24篇
  1987年   36篇
  1986年   28篇
  1985年   23篇
  1984年   34篇
  1983年   29篇
  1982年   39篇
  1981年   30篇
  1980年   23篇
  1979年   28篇
  1978年   26篇
  1977年   16篇
  1976年   21篇
  1975年   9篇
  1973年   8篇
排序方式: 共有6971条查询结果,搜索用时 10 毫秒
41.
Nuclear protein 1 (NUPR1) is a stress-induced protein activated by various stresses, such as inflammation and oxidative stress. We previously reported that Nupr1 deficiency increased bone volume by enhancing bone formation in 11-week-old mice. Analysis of differentially expressed genes between wild-type (WT) and Nupr1-knockout (Nupr1-KO) osteocytes revealed that high temperature requirement A 1 (HTRA1), a serine protease implicated in osteogenesis and transforming growth factor-β signaling was markedly downregulated in Nupr1-KO osteocytes. Nupr1 deficiency also markedly reduced HtrA1 expression, but enhanced SMAD1 signaling in in vitro-cultured primary osteoblasts. In contrast, Nupr1 overexpression enhanced HtrA1 expression in osteoblasts, suggesting that Nupr1 regulates HtrA1 expression, thereby suppressing osteoblastogenesis. Since HtrA1 is also involved in cellular senescence and age-related diseases, we analyzed aging-related bone loss in Nupr1-KO mice. Significant spine trabecular bone loss was noted in WT male and female mice during 6−19 months of age, whereas aging-related trabecular bone loss was attenuated, especially in Nupr1-KO male mice. Moreover, cellular senescence-related markers were upregulated in the osteocytes of 6−19-month-old WT male mice but markedly downregulated in the osteocytes of 19-month-old Nupr1-KO male mice. Oxidative stress-induced cellular senescence stimulated Nupr1 and HtrA1 expression in in vitro-cultured primary osteoblasts, and Nupr1 overexpression enhanced p16ink4a expression in osteoblasts. Finally, NUPR1 expression in osteocytes isolated from the bones of patients with osteoarthritis was correlated with age. Collectively, these results indicate that Nupr1 regulates HtrA1-mediated osteoblast differentiation and senescence. Our findings unveil a novel Nupr1/HtrA1 axis, which may play pivotal roles in bone formation and age-related bone loss.  相似文献   
42.
43.
44.
45.

Background

SNP rs5770917 located between CPT1B and CHKB, and HLA-DRB1*1501-DQB1*0602 haplotype were previously identified as susceptibility loci for narcolepsy with cataplexy. This study was conducted in order to investigate whether these genetic markers are associated with Japanese CNS hypersomnias (essential hypersomnia: EHS) other than narcolepsy with cataplexy.

Principal Findings

EHS was significantly associated with SNP rs5770917 (Pallele = 3.6×10−3; OR = 1.56; 95% c.i.: 1.12–2.15) and HLA-DRB1*1501-DQB1*0602 haplotype (P positivity = 9.2×10−11; OR = 3.97; 95% c.i.: 2.55–6.19). No interaction between the two markers (SNP rs5770917 and HLA-DRB1*1501-DQB1*0602 haplotype) was observed in EHS.

Conclusion

CPT1B, CHKB and HLA are candidates for susceptibility to CNS hypersomnias (EHS), as well as narcolepsy with cataplexy.  相似文献   
46.
We investigated the evolutionary conservation of polyglutamine binding protein-1 (PQBP-1) among Vertebrata. PQBP-1s were highly conserved and shared the same domain features including a WW domain, a polar amino acid rich domain (PRD), a nuclear localization signal (NLS), and a C-terminal domain (CTD) among Eutheria, but not always among Vertebrata. PQBP-1s of Vertebrata contained a variable region in the middle portion corresponding to the position of PRD. The full form of PRD including both 7aa and DR/ER repeats was specific to Eutheria. PRD of non-eutherian Amniota was minimal. Amphibia had no PRD. The DR/ER repeat was solo in fishes. Agnatha PRD was also rich in polar amino acids, but contained no repetitive sequence. We investigated 3 polyQ-containing proteins known to interact with PQBP-1: BRN-2, Huntingtin, and ATAXIN-1, and showed a diverse nature of protein-protein interaction in Vertebrata. There appears to be no interaction between PQBP-1 and BRN-2, Huntingtin, or ATAXIN-1 in Amphibia, while the interaction between PQBP-1 and BRN-2 is expected to be conserved among Mammalia, and the interaction between PQBP-1 and Huntingtin or ATAXIN-1 depends on the lineage in Eutheria.  相似文献   
47.

Purpose

Postoperative respiratory failure is a major problem which can prolong the stay in the intensive care unit in patients undergoing cardiac surgery. We measured the serum levels of the soluble isoform of the receptor for advanced glycation end products (sRAGE), and we studied its association with postoperative respiratory failure.

Methods

Eighty-seven patients undergoing elective cardiac surgery were enrolled in this multicenter observational study in three university hospitals. Serum biomarker levels were measured perioperatively, and clinical data were collected for 7 days postoperatively. The duration of mechanical ventilation was studied for 28 days.

Results

Serum levels of sRAGE elevated immediately after surgery (median, 1751 pg/mL; interquartile range (IQR) 1080–3034 pg/mL) compared with the level after anesthetic induction (median, 884 pg/mL; IQR, 568–1462 pg/mL). Postoperative sRAGE levels in patients undergoing off-pump coronary artery bypass grafting (median, 1193 pg/mL; IQR 737–1869 pg/mL) were significantly lower than in patients undergoing aortic surgery (median, 1883 pg/mL; IQR, 1406–4456 pg/mL; p = 0.0024) and valve surgery (median, 2302 pg/mL; IQR, 1447–3585 pg/mL; p = 0.0005), and postoperative sRAGE correlated moderately with duration of cardiopulmonary bypass (rs = 0.44, p<0.0001). Receiver operating characteristic curve analysis demonstrated that postoperative sRAGE had a predictive performance with area under the curve of 0.81 (95% confidence interval 0.71–0.88) for postoperative respiratory failure, defined as prolonged mechanical ventilation >3 days. The optimum cutoff value for prediction of respiratory failure was 3656 pg/mL, with sensitivity and specificity of 62% and 91%, respectively.

Conclusions

Serum sRAGE levels elevated immediately after cardiac surgery, and the range of elevation was associated with the morbidity of postoperative respiratory failure. Early postoperative sRAGE levels appear to be linked to cardiopulmonary bypass, and may have predictive performance for postoperative respiratory failure; however, large-scale validation studies are needed.  相似文献   
48.
Stearoyl-CoA desaturase (SCD) is the rate-limiting enzyme in monounsaturated fatty acid synthesis. Previously, we showed that Scd1 deficiency reduces liver triglyceride accumulation and considerably decreases synthesis of very low density lipoprotein and its secretion in both lean and obese mice. In the present study, we found that Scd1 deficiency significantly modulates hepatic glycerophospholipid profile. The content of phosphatidylcholine (PC) was increased by 40% and the activities of CTP:choline cytidylyltransferase (CCT), the rate-limiting enzyme in de novo PC synthesis, and choline phosphotransferase were increased by 64 and 53%, respectively, in liver of Scd1-/- mice. In contrast, the protein level of phosphatidylethanolamine N-methyltransferase, an enzyme involved in PC synthesis via methylation of phosphatidylethanolamine, was decreased by 80% in the liver of Scd1-/- mice. Membrane translocation of CCT is required for its activation. Immunoblot analyses demonstrated that twice as much CCTalpha was associated with plasma membrane in livers of Scd1-/- compared with wild type mice, suggesting that Scd1 mutation leads to an increase in CCT membrane affinity. The incorporation of [(3)H]glycerol into PC was increased by 2.5-fold in Scd1-/- primary hepatocytes compared with those of wild type mice. Furthermore, mitochondrial glycerol-3-phosphate acyltransferase activity was reduced by 42% in liver of Scd1-/- mice; however, the activities of microsomal glycerol-3-phosphate acyltransferase, diacylglycerol acyltransferase, and ethanolamine phosphotransferase were not affected by Scd1 mutation. Our study revealed that SCD1 deficiency specifically increases CCT activity by promoting its translocation into membrane and enhances PC biosynthesis in liver.  相似文献   
49.
Accumulating evidence suggests that pathogenic TAR DNA-binding protein (TDP)-43 fragments contain a partial RNA-recognition motif domain 2 (RRM2) in amyotrophic lateral sclerosis (ALS)/frontotemporal lobar degeneration. However, the molecular basis for how this domain links to the conformation and function of TDP-43 is unclear. Previous crystal analyses have documented that the RRM2-DNA complex dimerizes under acidic and high salt conditions, mediated by the intermolecular hydrogen bonds of Glu246-Ile249 and Asp247-Asp247. The aims of this study were to investigate the roles of Glu246 and Asp247 in the molecular assembly of RRM2 under physiological conditions, and to evaluate their potential use as markers for TDP-43 misfolding due to the aberrantly exposed dimer interface. Unexpectedly, gel filtration analyses showed that, regardless of DNA interaction, the RRM2 domain remained as a stable monomer in phosphate-buffered saline. Studies using substitution mutants revealed that Glu246 and, especially, Asp247 played a crucial role in preserving the functional RRM2 monomers. Substitution to glycine at Glu246 or Asp247 induced the formation of fibrillar oligomers of RRM2 accompanied by the loss of DNA-binding affinity, which also affected the conformation and the RNA splicing function of full-length TDP-43. A novel monoclonal antibody against peptides containing Asp247 was found to react with TDP-43 inclusions of ALS patients and mislocalized cytosolic TDP-43 in cultured cells, but not with nuclear wild-type TDP-43. Our findings indicate that Glu246 and Asp247 play pivotal roles in the proper conformation and function of TDP-43. In particular, Asp247 should be studied as a molecular target with an aberrant conformation related to TDP-43 proteinopathy.  相似文献   
50.
The link between endothelial nitric oxide synthase (eNOS) activation and vascular diameter during ischemia-reperfusion was investigated in the rat heart. After short (<30 min) and long (>45 min) time of ischemia conferred by coronary artery occlusion of the rats, reperfusion caused dilatation and constriction of arterioles, respectively. Partial oxygen pressure (pO2) measurement of the heart by the electrode confirmed the hyper-perfusion and no-reflow phenomena during reperfusion, as well as myocardial ischemia. The vascular diameter was correlated with phosphorylation of Akt and serine 1177 residue of eNOS, and formation of NO-bound guanylate cyclase (GC) by immuoflorescence study. Western blotting confirmed the phosphorylation of eNOS-Ser1177 depending on ischemia time. The constriction during reperfusion after 45 min of ischemia is supposedly caused by the inhibition of Akt-mediated eNOS-Ser1177 phosphorylation, which was suppressed by a PKC inhibitor chelerythrine, or ROS scavengers N-2-mercaptopropionyl glycine (MPG) and 4,5-Dihydroxy-1, 3-benzenedisulfonic acid disodium salt (Tiron). However, an endothelin receptor antagonist BQ123 alleviated the vasoconstriction by increasing NO availability but not eNOS-Ser1177 phosphorylation. Thus, vascular patency is correlated with eNOS-Ser1177 phosphorylation in association with ROS, and PKC during reperfusion. Endothelin inhibits vasodilatation by reducing NO availability during reperfusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号