首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6708篇
  免费   309篇
  国内免费   8篇
  7025篇
  2023年   13篇
  2022年   32篇
  2021年   66篇
  2020年   41篇
  2019年   60篇
  2018年   93篇
  2017年   80篇
  2016年   106篇
  2015年   186篇
  2014年   241篇
  2013年   499篇
  2012年   400篇
  2011年   405篇
  2010年   259篇
  2009年   273篇
  2008年   449篇
  2007年   431篇
  2006年   418篇
  2005年   473篇
  2004年   467篇
  2003年   436篇
  2002年   395篇
  2001年   51篇
  2000年   57篇
  1999年   55篇
  1998年   94篇
  1997年   73篇
  1996年   79篇
  1995年   79篇
  1994年   50篇
  1993年   61篇
  1992年   58篇
  1991年   53篇
  1990年   34篇
  1989年   39篇
  1988年   31篇
  1987年   37篇
  1986年   29篇
  1985年   24篇
  1984年   34篇
  1983年   30篇
  1982年   39篇
  1981年   31篇
  1980年   22篇
  1979年   28篇
  1978年   27篇
  1977年   16篇
  1976年   21篇
  1975年   9篇
  1973年   10篇
排序方式: 共有7025条查询结果,搜索用时 15 毫秒
71.
72.
73.
The trichothecene 3-O-acetyltransferase gene (FgTri101) required for trichothecene production by Fusarium graminearum is located between the phosphate permease gene (pho5) and the UTP-ammonia ligase gene (ura7). We have cloned and sequenced the pho5-to-ura7 regions from three trichothecene nonproducing Fusarium (i.e., F. oxysporum, F. moniliforme, and Fusarium species IFO 7772) that belong to the teleomorph genus Gibberella. BLASTX analysis of these sequences revealed portions of predicted polypeptides with high similarities to the TRI101 polypeptide. While FspTri101 (Fusarium species Tri101) coded for a functional 3-O-acetyltransferase, FoTri101 (F. oxysporum Tri101) and FmTri101 (F. moniliforme Tri101) were pseudogenes. Nevertheless, F. oxysporum and F. moniliforme were able to acetylate C-3 of trichothecenes, indicating that these nonproducers possess another as yet unidentified 3-O-acetyltransferase gene. By means of cDNA expression cloning using fission yeast, we isolated the responsible FoTri201 gene from F. oxysporum; on the basis of this sequence, FmTri201 has been cloned from F. moniliforme by PCR techniques. Both Tri201 showed only a limited level of nucleotide sequence similarity to FgTri101 and FspTri101. The existence of Tri101 in a trichothecene nonproducer suggests that this gene existed in the fungal genome before the divergence of producers from nonproducers in the evolution of Fusarium species.  相似文献   
74.
We have designed and synthesized the acetal derivatives of 1-(3-C-ethynyl-beta-D-ribo-pentofuranosyl)cytosine (ECyd, 1), the 2',3'-O-nitrobenzylidene derivatives 2 and 3 and the 5'-O-(alkoxy)(nitrophenyl)methyl derivatives 6-10 as potential prodrugs of ECyd. These prodrugs can be selectively activated in tumor tissues via a bio-reduction-hydrolysis mechanism owing to the characteristic properties of tumor tissues, such as hypoxia and lower pH. Although the 2',3'-O-(4-nitrobenzylidene) derivatives 2 and 3 were converted bio-reductively into the corresponding 4-aminobenzylidene derivatives by rat S-9 mix, the reduction products, that is, the corresponding amino congeners 4 and 5, proved to be rather stable in an aqueous solution at pH 6.5 used as a pH model for acidic tumor tissues. In contrast, the 5'-O-(alkoxy)(4-nitropheny)methyl derivatives 6-8 were also reduced by rat S-9 mix to the corresponding amino congeners 11-13, which were hydrolyzed to release ECyd more effectively at pH 6.5 than at pH 7.4. Accordingly, the acyclic acetals 6-8 may be efficient prodrugs of ECyd, that are effectively reduced under physiological conditions releasing ECyd in acidic tumor tissues.  相似文献   
75.
Many bacteria form Gln-tRNAGln and Asn-tRNAAsn by conversion of the misacylated Glu-tRNAGln and Asp-tRNAAsn species catalyzed by the GatCAB amidotransferase in the presence of ATP and an amide donor (glutamine or asparagine). Here, we report the crystal structures of GatCAB from the hyperthermophilic bacterium Aquifex aeolicus, complexed with glutamine, asparagine, aspartate, ADP, or ATP. In contrast to the Staphylococcus aureus GatCAB, the A. aeolicus enzyme formed acyl-enzyme intermediates with either glutamine or asparagine, in line with the equally facile use by the amidotransferase of these amino acids as amide donors in the transamidation reaction.A water-filled ammonia channel is open throughout the length of the A. aeolicus GatCAB from the GatA active site to the synthetase catalytic pocket in the B-subunit. A non-catalytic Zn2+ site in the A. aeolicus GatB stabilizes subunit contacts and the ammonia channel. Judged from sequence conservation in the known GatCAB sequences, the Zn2+ binding motif was likely present in the primordial GatB/E, but became lost in certain lineages (e.g., S. aureus GatB). Two divalent metal binding sites, one permanent and the other transient, are present in the catalytic pocket of the A. aeolicus GatB. The two sites enable GatCAB to first phosphorylate the misacylated tRNA substrate and then amidate the activated intermediate to form the cognate products, Gln-tRNAGln or Asn-tRNAAsn.  相似文献   
76.
Previous studies have demonstrated that experimental type 1 diabetes induced by streptozotocin causes alterations in the biochemical and functional properties of several receptor systems in the rat bladder. However, the exact mechanism involved in the pathophysiology of voiding dysfunction in type 2 diabetic patients is unknown. Because the GK rat is a widely accepted genetically determined rodent model for human type 2 diabetes, we investigated diabetes-induced changes in the bladder smooth muscle of the GK rats at several time points. Male GK rats and age-matched Wistar rats, as controls, were maintained for 4, 8, 16, and 32 weeks. Contractile responses to KCl, carbachol, ATP, and electrical field stimulation (EFS) were measured by using the isolated muscle bath techniques. Acetylcholine (ACh) release induced by EFS from bladder muscle strips was measured by using high-performance liquid chromatography coupled with a microdialysis procedure. Maximum contractile responses to carbachol and ATP, the release of ACh, and tissue sorbitol levels were similar in bladders from GK and control rats until 8 weeks of age. At 16 weeks of age, however, the contractile responses to carbachol and ATP, and tissue sorbitol levels were increased, and the EFS-induced ACh release was decreased in GK rats compared with controls. Although the maximum contractile responses to EFS were unchanged until 16 weeks of age, they were decreased in 32-week-old GK rats, compared with controls. Our data indicate the presence of age-related alterations in the biochemical and functional properties of the bladder in type 2 diabetic GK rats.  相似文献   
77.
The novel antigen K114 (AgK114) has been previously identified in normal hamster skin, and its expression has been up-regulated accompanying tissue damages of the skin, although there is no information on its biological functions. To determine the physiological role of AgK114, we prepared anti-mouse AgK114 monoclonal antibody and studied its tissue distribution in healthy adult mice by immunocytochemistry. A widespread and unique expression of AgK114 peptide was found in the selected organs of various systems (hair follicle cells and sebaceous gland of skin, ciliated epithelial cells of trachea and bronchial tube, striated portion of submandibular gland, distal convoluted tubule cells of kidney, ciliated epithelial cells of oviduct, medulla of adrenal gland and anterior lobe of pituitary gland). Interestingly, dual expression of AgK114 peptide and growth hormone in somatotrophs was found in anterior lobe of pituitary gland by double immunocytochemistry. AgK114 peptide was expressed widely in many regionally well-defined cellular systems in various peripheral tissues, suggesting that AgK114 peptide may have some roles of physiological functions in these organs. The data from our current study have provided a rationale for further studies of functional roles of AgK114 peptide in a variety of organs or tissues under physiological conditions.  相似文献   
78.
Mitochondria are accurately transmitted to the next generation through a female germ cell in most animals. Mitochondria produce most ATP, accompanied by the generation of reactive oxygen species (ROS). A specialized mechanism should be necessary for inherited mitochondria to escape from impairments of mtDNA by ROS. Inherited mitochondria are named germ-line mitochondria, in contrast with somatic ones. We hypothesized that germ-line mitochondria are distinct from somatic ones. The protein profiles of germ-line and somatic mitochondria were compared, using oocytes at two different stages in Xenopus laevis. Some subunits of ATP synthase were at a low level in germ-line mitochondria, which was confirmed immunologically. Ultrastructural histochemistry using 3,3′-diaminobenzidine (DAB) showed that cytochrome c oxidase (COX) activity of germ-line mitochondria was also at a low level. Mitochondria in one oocyte were segregated into germ-line mitochondria and somatic mitochondria, during growth from stage I to VI oocytes. Respiratory activity represented by ATP synthase expression and COX activity was shown to be low during most of the long gametogenetic period. We propose that germ-line mitochondria that exhibit suppressed respiration alleviate production of ROS and enable transmission of accurate mtDNA from generation to generation.  相似文献   
79.
80.
Phenolic composition and radical scavenging activity in the shochu distillery by-products of sweetpotato (Ipomoea batatas L.) treated with koji (Aspergillus awamori mut.) and cellulase (Cellulosin T2) were investigated to develop new uses. Koji and Cellulosin T2 treatment of shochu distillery by-products from sweetpotatoes, rice, and barley increased phenolic content. Caffeic acid was identified as a dominant phenolic component in the shochu distillery by-products of the sweetpotato. Adding koji and/or Cellulosin T2 to the shochu distillery by-product indicated that koji was involved in caffeic acid production. Caffeic acid was not detected in raw or steamed roots of "Koganesengan", the material of sweetpotato for shochu production, suggesting that it is produced during shochu fermentation. The phenolic content and radical scavenging activity the shochu distillery by-product treated with koji and Cellulosin T2 were superior to those of commercial vinegar. These results suggest that koji treatment of sweetpotato-derived shochu distillery by-products has potential for food materials with physiological functions. Further koji treatment of sweetpotato shochu-distillery by-products may be applicable to mass production of caffeic acid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号