首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6632篇
  免费   306篇
  国内免费   8篇
  2023年   12篇
  2022年   30篇
  2021年   66篇
  2020年   41篇
  2019年   60篇
  2018年   93篇
  2017年   80篇
  2016年   106篇
  2015年   185篇
  2014年   240篇
  2013年   499篇
  2012年   398篇
  2011年   404篇
  2010年   257篇
  2009年   272篇
  2008年   449篇
  2007年   430篇
  2006年   414篇
  2005年   472篇
  2004年   462篇
  2003年   433篇
  2002年   393篇
  2001年   48篇
  2000年   52篇
  1999年   54篇
  1998年   94篇
  1997年   71篇
  1996年   79篇
  1995年   79篇
  1994年   50篇
  1993年   61篇
  1992年   50篇
  1991年   44篇
  1990年   30篇
  1989年   36篇
  1988年   24篇
  1987年   36篇
  1986年   28篇
  1985年   23篇
  1984年   34篇
  1983年   29篇
  1982年   39篇
  1981年   30篇
  1980年   22篇
  1979年   28篇
  1978年   26篇
  1977年   16篇
  1976年   21篇
  1975年   9篇
  1973年   8篇
排序方式: 共有6946条查询结果,搜索用时 15 毫秒
951.
It was reported recently that vertebrate-type steroids exist and control reproduction in several groups of invertebrates, including molluscs. Sexually reproductive freshwater planarians of the species Bdellocephala brunnea have a limited breeding season in their natural habitat. This phenomenon suggests that some endogenous reproductive hormones might play a role in vivo. However, to date, sex steroids such as androgen, estrogen, and progesterone have not been found in planarians. The goal of the present study was to determine whether androgen is present in sexual planarians such as B. brunnea. The presence of testosterone was detected by high-pressure liquid chromatography and, in sexually reproductive individuals in which no seminal vesicles were visible, the level of testosterone was about twice than that in individuals with visible seminal vesicles. An enzyme-linked immunosorbent assay revealed that the levels of testosterone during terminal spermatogenesis were three times higher than during the spermatocyte-building phase. Our results indicate that sexually reproductive freshwater planarians such as B. brunnea might have vertebrate-type steroids and show variation in testosterone levels during spermatogenesis.  相似文献   
952.
The Ogasawara (Bonin) Islands are oceanic islands of volcanic origin located in the northwestern Pacific Ocean about 1,000 km south of the Japanese mainland. A large carpenter bee, Xylocopa (Koptortosoma) ogasawarensis, is endemic to the islands but its closest relative is unknown. The Ogasawara Islands are geographically closest to the Japanese Archipelago, but this area is inhabited only by species of a different subgenus, Alloxylocopa. Thus, X. ogasawarensis is commonly thought to have originated from other members of Koptortosoma, which is widely distributed in the Oriental tropical region. In this study, we investigated the origin of X. ogasawarensis using a phylogenetic analysis of Xylocopa based on four genes: mitochondrial cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b), and nuclear elongation factor-1alpha (EF-1alpha) and phosphoenolpyruvate carboxykinase (PEPCK). A combined analysis of the four genes strongly suggests that Koptortosoma is a large, polyphyletic group, within which Alloxylocopa is embedded. Xylocopa ogasawarensis emerged as the species most closely related to Alloxylocopa and not to Oriental species of Koptortosoma. Contrary to previous views of the origin of X. ogasawarensis, our results suggest that X. ogasawarensis and Alloxylocopa share a common origin and diverged after they colonized the island regions of East Asia.  相似文献   
953.
Human sPLA2-III [group III secreted PLA2 (phospholipase A2)] is an atypical sPLA2 isoenzyme that consists of a central group III sPLA2 domain flanked by unique N- and C-terminal domains. In the present study, we found that sPLA2-III is expressed in neuronal cells, such as peripheral neuronal fibres, spinal DRG (dorsal root ganglia) neurons and cerebellar Purkinje cells. Adenoviral expression of sPLA2-III in PC12 cells (pheochromocytoma cells) or DRG explants facilitated neurite outgrowth, whereas expression of a catalytically inactive sPLA2-III mutant or use of sPLA2-III-directed siRNA (small interfering RNA) reduced NGF (nerve growth factor)-induced neuritogenesis. sPLA2-III also suppressed neuronal death induced by NGF deprivation. Lipid MS revealed that sPLA2-III overexpression increased the cellular level of lysophosphatidylcholine, a PLA2 reaction product with neuritogenic and neurotropic activities, whereas siRNA knockdown reduced the level of lysophosphatidylcholine. These observations suggest the potential contribution of sPLA2-III to neuronal differentiation and its function under certain conditions.  相似文献   
954.
The extracellular signal-regulated kinase (ERK) cascade has been shown to be a key modulator of pain processing in the central nucleus of the amygdala (CeA) in mice. ERK is activated in the CeA during persistent inflammatory pain and this activation is both necessary and sufficient to induce peripheral tactile hypersensitivity. Interestingly, biochemical studies show that inflammation-induced ERK activation in the CeA only occurs in the right, but not the left hemisphere. This inflammation-induced ERK activation in the right CeA is independent of the side of peripheral inflammation, suggesting that there is a dominant role of the right hemisphere in the modulation of pain by ERK activation in the CeA. However, the functional significance of this biochemical lateralization has yet to be determined. In the present study, we tested the hypothesis that modulation of pain by ERK signaling in the CeA is functionally lateralized. We acutely blocked ERK activation in the CeA by infusing the MEK inhibitor U0126 into the right or the left hemisphere and then measured the behavioral effects on inflammation-induced mechanical hypersensitivity in mice. Our results show that blockade of ERK activation in the right, but not the left CeA, decreases inflammation-induced peripheral hypersensitivity independent of the side of peripheral injury. These findings demonstrate that modulation of pain by ERK signaling in the CeA is functionally lateralized to the right hemisphere, suggesting a dominant role of the right amygdala in pain processing.  相似文献   
955.
This study aimed to evaluate the effects of food texture and viscosity on the swallowing function by measuring tongue pressure and performing a videofluorographic (VF) examination. Eleven normal adults were recruited for this study. Test foods with different consistencies and liquid contents, i.e., a half-solid nutrient made of 0.8 and 1.5% agar powder, syrup, and a liquid containing 40 wt/vol% barium sulfate, were swallowed, and the anterior (AT) and posterior tongue pressures (PT) and electromyographic (EMG) activity of the suprahyoid muscles were recorded, together with VF images. The timing of each event obtained from EMG, tongue pressure, and VF recordings was measured and then compared. We found that the AT and PT activity patterns were similar and showed a single peak. The peak, area, and time duration of all of the variables for AT and PT and EMG burst increased with increasing hardness of the bolus. The onset of the EMG burst always preceded those of the AT and PT activities, while there were no significant differences in peak and offset times among EMG burst, AT, and PT. Total swallowing time and oral ejection time were significantly longer during the swallowing of 1.5% agar than any other boluses, while pharyngeal transit time and clearance time were significantly longer during the swallowing of syrup, which was as hard as the liquid, but showed a higher viscosity than the liquid. The results suggested that the major effects of food hardness were to delay oral ejection time, which strongly delays total swallowing time. In addition, pharyngeal bolus transit is not dependent on the hardness of food but on its viscosity.  相似文献   
956.
Human T-cell leukemia virus type 1 (HTLV-1) encodes an antisense viral gene product termed HTLV-1 basic leucine-zipper factor (HBZ). HBZ forms heterodimers with c-Jun, a member of the AP-1 family, and promotes its proteasomal degradation. Although most proteasomal substrates are targeted for degradation via conjugation of polyubiquitin chains, we show that ubiquitination is not required for HBZ-mediated proteasomal degradation of c-Jun. We demonstrate that HBZ directly interacts with both the 26 S proteasome and c-Jun and facilitates the delivery of c-Jun to the proteasome without ubiquitination. HBZ acts as a tethering factor between the 26 S proteasome and its substrate, thereby bypassing the targeting function of ubiquitination. These findings disclose a novel viral strategy to utilize the cellular proteolytic system for viral propagation.  相似文献   
957.
Dentin sialophosphoprotein (DSPP) is critical for proper mineralization of tooth dentin, and mutations in DSPP cause inherited dentin defects. Dentin phosphoprotein (DPP) is the C-terminal cleavage product of DSPP that binds collagen and induces intrafibrillar mineralization. We isolated DPP from individual pigs and determined that its N-terminal and C-terminal domains are glycosylated and that DPP averages 155 phosphates per molecule. Porcine DPP is unstable at low pH and high temperatures, and complexing with collagen improves its stability. Surprisingly, we observed DPP size variations on SDS-PAGE for DPP isolated from individual pigs. These variations are not caused by differences in proteolytic processing or degrees of phosphorylation or glycosylation, but rather to allelic variations in Dspp. Characterization of the DPP coding region identified 4 allelic variants. Among the 4 alleles, 27 sequence variations were identified, including 16 length polymorphisms ranging from 3 to 63 nucleotides. None of the length variations shifted the reading frame, and all localized to the highly redundant region of the DPP code. The 4 alleles encode DPP domains having 551, 575, 589, or 594 amino acids and completely explain the DPP size variations. DPP length variations are polymorphic and are not associated with dentin defects.  相似文献   
958.
The blood–brain barrier (BBB) is confined to the endothelium of brain capillaries and is indispensable for fluid homeostasis and neuronal function. In this study, we show that endothelial Wnt/β-catenin (β-cat) signaling regulates induction and maintenance of BBB characteristics during embryonic and postnatal development. Endothelial specific stabilization of β-cat in vivo enhances barrier maturation, whereas inactivation of β-cat causes significant down-regulation of claudin3 (Cldn3), up-regulation of plamalemma vesicle-associated protein, and BBB breakdown. Stabilization of β-cat in primary brain endothelial cells (ECs) in vitro by N-terminal truncation or Wnt3a treatment increases Cldn3 expression, BBB-type tight junction formation, and a BBB characteristic gene signature. Loss of β-cat or inhibition of its signaling abrogates this effect. Furthermore, stabilization of β-cat also increased Cldn3 and barrier properties in nonbrain-derived ECs. These findings may open new therapeutic avenues to modulate endothelial barrier function and to limit the devastating effects of BBB breakdown.  相似文献   
959.
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号