首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6633篇
  免费   307篇
  国内免费   8篇
  6948篇
  2023年   13篇
  2022年   31篇
  2021年   66篇
  2020年   41篇
  2019年   60篇
  2018年   93篇
  2017年   80篇
  2016年   106篇
  2015年   185篇
  2014年   240篇
  2013年   499篇
  2012年   398篇
  2011年   404篇
  2010年   257篇
  2009年   272篇
  2008年   449篇
  2007年   430篇
  2006年   414篇
  2005年   472篇
  2004年   462篇
  2003年   433篇
  2002年   393篇
  2001年   48篇
  2000年   52篇
  1999年   54篇
  1998年   94篇
  1997年   71篇
  1996年   79篇
  1995年   79篇
  1994年   50篇
  1993年   61篇
  1992年   50篇
  1991年   44篇
  1990年   30篇
  1989年   36篇
  1988年   24篇
  1987年   36篇
  1986年   28篇
  1985年   23篇
  1984年   34篇
  1983年   29篇
  1982年   39篇
  1981年   30篇
  1980年   22篇
  1979年   28篇
  1978年   26篇
  1977年   16篇
  1976年   21篇
  1975年   9篇
  1973年   8篇
排序方式: 共有6948条查询结果,搜索用时 15 毫秒
91.
Invasion of two PNA strands to double-stranded DNA is one of the most promising methods to recognize a predetermined site in double-stranded DNA (PNA = peptide nucleic acid). In order to facilitate this 'double-duplex invasion', a new type of PNA was prepared by using chiral PNA monomers in which a nucleobase was bound to the alpha-nitrogen of N-(2-aminoethyl)-d-lysine. These positively charged monomer units, introduced to defined positions in Nielsen's PNAs (poly[N-(2-aminoethyl)glycine] derivatives), promoted the invasion without impairing mismatch-recognizing activity. When pseudo-complementary nucleobases 2,6-diaminopurine and 2-thiouracil were bound to N-(2-aminoethyl)-d-lysine, the invasion successfully occurred even at highly G-C-rich regions [e.g. (G/C)7(A/T)3 and (G/C)8(A/T)2] which were otherwise hardly targeted. Thus, the scope of sequences available as the target site has been greatly expanded. In contrast with the promotion by the chiral PNA monomers derived from N-(2-aminoethyl)-d-lysine, their l-isomers hardly invaded, showing crucial importance of the d-chirality. The promotion of double-duplex invasion by the chiral (d) PNA monomer units was ascribed to both destabilization of PNA/PNA duplex and stabilization of PNA/DNA duplexes.  相似文献   
92.
Staphylococcus aureus lipase (SAL) is known to possess broad substrate specificity for triacylglycerides. We found that a sub-minimum inhibitory concentration of farnesol (1000 mg L(-1)) inhibits this lipase activity on a Mueller-Hinton agar containing 1% Tween substrates. A quantitative lipase assay using p-nitrophenyl palmitate (pNPP) revealed that the inhibitory action of farnesol appears to be the result of the inhibition of lipase activity rather than of its secretion into the culture medium. The inhibition was observed in all the tested 8 methicillin-susceptible S. aureus and 31 methicillin-resistant S. aureus clinical isolates. Using homogeneous lipase purified by hydrophobic interaction chromatography, it was revealed that farnesol could competitively inhibit the lipase activity against the substrate pNPP.  相似文献   
93.
The first evidence for gene disruption by double-stranded RNA (dsRNA) came from careful analysis in Caenorhabditis elegans. This phenomenon, called RNA interference (RNAi), was observed subsequently in various organisms, including plants, nematodes, Drosophila, and protozoans. Very recently, it has been reported that in mammalian cells, 21- or 22-nucleotide (nt) RNAs with 2-nt 3' overhangs (small inhibitory RNAs, siRNAs) exhibit an RNAi effect. This is because siRNAs are not recognized by the well-characterized host defense system against viral infections, involving dsRNA-dependent inhibition of protein synthesis. However, the current method for introducing synthetic siRNA into cells by lipofection restricts the range of applications of RNAi as a result of the low transfection efficiencies in some cell types and/or short-term persistence of silencing effects. Here, we report a vector-based siRNA expression system that can induce RNAi in mammalian cells. This technical advance for silencing gene expression not only facilitates a wide range of functional analysis of mammalian genes but might also allow therapeutic applications by means of vector-mediated RNAi.  相似文献   
94.
95.
96.
Elevated plasma low-density lipoprotein (LDL) cholesterol is considered as a risk factor for atherosclerosis. Because the hepatic LDL receptor (LDLR) uptakes plasma lipoproteins and lowers plasma LDL cholesterol, the activation of LDLR is a promising drug target for atherosclerosis. In the present study, we identified the naturally occurring alkaloid piperine, as an inducer of LDLR gene expression by screening the effectors of human LDLR promoter. The treatment of HepG2 cells with piperine increased LDLR expression at mRNA and protein levels and stimulated LDL uptake. Subsequent luciferase reporter gene assays revealed that the mutation of sterol regulatory element-binding protein (SREBP)-binding element abolished the piperine-mediated induction of LDLR promoter activity. Further, piperine treatments increased mRNA levels of several SREBP targets and mature forms of SREBPs. However, the piperine-mediated induction of the mature forms of SREBPs was not observed in SRD–15 cells, which lack insulin-induced gene–1 (Insig–1) and Insig–2. Finally, the knockdown of SREBPs completely abolished the piperine-meditated induction of LDLR gene expression in HepG2 cells, indicating that piperine stimulates the proteolytic activation of SREBP and subsequent induction of LDLR expression and activity.  相似文献   
97.
98.
Cutaneous leishmaniasis (CL) is gaining attention as a public health problem. We present two cases of CL imported from Syria and Venezuela in Japan. We diagnosed them as CL non-invasively by the direct boil loop-mediated isothermal amplification method and an innovative sequencing method using the MinION? sequencer. This report demonstrates that our procedure could be useful for the diagnosis of CL in both clinical and epidemiological settings.  相似文献   
99.
The presence of immunoreactive porcine brain natriuretic peptide in rat tissues was studied with a specific radioimmunoassay for porcine brain natriuretic peptide-26. The cross-reactivity of the antiserum used was less than 0.001% with rat atrial natriuretic peptide, rat brain natriuretic peptide-32 and rat brain natriuretic peptide-45. Immunoreactive porcine brain natriuretic peptide was detectable in various tissues of the rat, and high concentrations of immunoreactive porcine brain natriuretic peptide were found in the brain and cardiac atrium, with the highest level in the hypothalamus (159±30 fmol/gram wet tissue, mean±SEM, n=4). Reverse phase high performance liquid chromatography showed that the immunoreactive porcine brain natriuretic peptide of the whole brain and heart extracts eluted mainly at an identical position to synthetic porcine brain natriuretic peptide-26. These findings indicate that porcine brain natriuretic peptide-like substance, distinct from rat brain natriuretic peptide, is present in high concentrations in the rat brain and cardiac atrium.  相似文献   
100.
Insulin-stimulated GLUT4 recruitment to the plasma membrane is impaired in insulin resistance. We recently reported that a cell permeable phosphoinositide-binding peptide induces GLUT4 recruitment as potently as insulin, but does not activate GLUT4 to initiate glucose uptake. Here we investigated whether the peptide-induced GLUT4 recruitment is intact in insulin resistance. The expression levels of GLUT1 and GLUT4 were unaffected by chronically treating 3T3-L1 adipocytes with insulin. GLUT4 recruitment by acute insulin stimulation after chronic insulin treatment was significantly reduced, but was fully restored by the peptide treatment. However, subsequent acute insulin stimulation to activate GLUT4 failed to increase glucose uptake in peptide-pretreated cells. Insulin-stimulated GLUT1 recruitment was unaffected by the peptide pretreatment. These results suggest that the GLUT4 recruitment signal caused by the peptide is intact in insulin resistance, but GLUT4 activation that occurs subsequent to recruitment is not rescued by the peptide treatment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号