首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1220篇
  免费   153篇
  2021年   13篇
  2020年   6篇
  2018年   12篇
  2017年   9篇
  2016年   17篇
  2015年   25篇
  2014年   31篇
  2013年   51篇
  2012年   69篇
  2011年   66篇
  2010年   28篇
  2009年   22篇
  2008年   52篇
  2007年   68篇
  2006年   56篇
  2005年   51篇
  2004年   43篇
  2003年   46篇
  2002年   46篇
  2001年   56篇
  2000年   52篇
  1999年   50篇
  1998年   20篇
  1997年   24篇
  1996年   18篇
  1995年   13篇
  1994年   14篇
  1993年   12篇
  1992年   26篇
  1991年   35篇
  1990年   26篇
  1989年   41篇
  1988年   31篇
  1987年   24篇
  1986年   21篇
  1985年   23篇
  1984年   14篇
  1983年   13篇
  1982年   16篇
  1981年   6篇
  1980年   10篇
  1979年   8篇
  1978年   8篇
  1977年   7篇
  1976年   7篇
  1975年   7篇
  1974年   11篇
  1973年   6篇
  1971年   7篇
  1968年   8篇
排序方式: 共有1373条查询结果,搜索用时 15 毫秒
191.
Because the comprehensive effects on metabolism by genetic manipulation of leaf Rubisco content are unknown, metabolome analysis was carried out on transgenic rice plants with increased or decreased Rubisco content using the capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS) technique. In RBCS-sense plants, an increase in Rubisco content did not improve light-saturated photosynthesis. Glyceraldehyde 3-phosphate and sedoheputulose 7-phosphate levels increased, but ribulose bisphosphate (RuBP), ATP and ADP levels were not affected. It is considered from these results that RuBP regeneration independent of ATP supply became a bottleneck for photosynthesis. In RBCS-antisense plants, a decline in Rubisco content decreased photosynthesis with a substantial accumulation of RuBP. ATP and ADP levels also increased and were associated with increases in the diphosphate and triphosphate compounds of other nucleosides. These results imply that a decline in Rubisco content slowed down the Calvin cycle and that the resultant excess energy of ATP was transferred to other nucleoside diphosphates and triphosphates. The levels of amino acids tended to decline in RBCS-sense plants and increase in RBCS-antisense plants, probably reflecting the demand for Rubisco synthesis. Starch and carbohydrate levels decreased only in RBCS-antisense plants. Thus, genetic manipulation of Rubisco contents widely affected C and N metabolism in rice.  相似文献   
192.
A novel convergent method for the synthesis of α-acyl-γ-hydroxylactams utilizing the aldol reaction of N-Boc-protected γ-methoxylactams was developed. As the first application of this method for the synthesis of biologically active natural products, the total synthesis of platelet aggregation inhibitors PI-090 and PI-091 were also investigated and successfully achieved.  相似文献   
193.
Translation arrest leads to an endonucleolytic cleavage of mRNA that is termed no-go decay (NGD). It has been reported that the Dom34:Hbs1 complex stimulates this endonucleolytic cleavage of mRNA induced by translation arrest in vivo and dissociates subunits of a stalled ribosome in vitro. Here we report that Dom34:Hbs1 dissociates the subunits of a ribosome that is stalled at the 3' end of mRNA in vivo, and has a crucial role in both NGD and nonstop decay. Dom34:Hbs1-mediated dissociation of a ribosome that is stalled at the 3' end of mRNA is required for degradation of a 5'-NGD intermediate. Dom34:Hbs1 facilitates the decay of nonstop mRNAs from the 3' end by exosomes and is required for the complete degradation of nonstop mRNA decay intermediates. We propose that Dom34:Hbs1 stimulates degradation of the 5'-NGD intermediate and of nonstop mRNA by dissociating the ribosome that is stalled at the 3' end of the mRNA.  相似文献   
194.
The severe acute respiratory syndrome coronavirus (SARS-CoV) nsp1 protein has unique biological functions that have not been described in the viral proteins of any RNA viruses; expressed SARS-CoV nsp1 protein has been found to suppress host gene expression by promoting host mRNA degradation and inhibiting translation. We generated an nsp1 mutant (nsp1-mt) that neither promoted host mRNA degradation nor suppressed host protein synthesis in expressing cells. Both a SARS-CoV mutant virus, encoding the nsp1-mt protein (SARS-CoV-mt), and a wild-type virus (SARS-CoV-WT) replicated efficiently and exhibited similar one-step growth kinetics in susceptible cells. Both viruses accumulated similar amounts of virus-specific mRNAs and nsp1 protein in infected cells, whereas the amounts of endogenous host mRNAs were clearly higher in SARS-CoV-mt-infected cells than in SARS-CoV-WT-infected cells, in both the presence and absence of actinomycin D. Further, SARS-CoV-WT replication strongly inhibited host protein synthesis, whereas host protein synthesis inhibition in SARS-CoV-mt-infected cells was not as efficient as in SARS-CoV-WT-infected cells. These data revealed that nsp1 indeed promoted host mRNA degradation and contributed to host protein translation inhibition in infected cells. Notably, SARS-CoV-mt infection, but not SARS-CoV-WT infection, induced high levels of beta interferon (IFN) mRNA accumulation and high titers of type I IFN production. These data demonstrated that SARS-CoV nsp1 suppressed host innate immune functions, including type I IFN expression, in infected cells and suggested that SARS-CoV nsp1 most probably plays a critical role in SARS-CoV virulence.  相似文献   
195.
Nonionic amphiphilic copolypeptides, which were composed of hydrophilic poly(sarcosine) and hydrophobic poly(gamma-methyl L-glutamate) blocks, were synthesized with varying chain lengths of the blocks. The polypeptides having a suitable hydrophilic and hydrophobic balance were found to form vesicular assemblies of 100 nm size in buffer, which was evidenced by the TEM observation, the DLS analysis, and the encapsulation experiment. The genuine peptide vesicles, peptosomes, were labeled with a near-infrared fluorescence (NIRF) probe. In vivo retention in blood experiment showed long circulation of the peptosome in rat blood as stable as the PEGylated liposome. NIRF imaging of a small cancer on mouse by using the peptosome as a nanocarrier was successful due to the EPR effect of the peptosome. Peptosome is shown here as a novel excellent nanocarrier for molecular imaging.  相似文献   
196.
Paralytic shellfish toxins produced by dinoflagellates are known to deter copepod grazing. Dinoflagellate species, including Protoceratium reticulatum, also produce disulfated polyether yessotoxins that were previously referred to as diarrheic shellfish toxins. However, the role of yessotoxins in predator–prey relationships is not yet clear. In the present study, the effects of purified yessotoxin (YTX) on feeding activities of Acartia hudsonica (Copepoda, Calanoida) were experimentally investigated. Polystyrene fluorescent microspheres (10 μm in diameter) colored bright blue or yellow-green were coated with cell extracts of P. reticulatum that do not produce yessotoxins. The bright blue microspheres were further coated with YTX, and the yellow-green microspheres were used as the reference. The microspheres were then given to the copepods separately or in combination to measure clearance rates and feeding selectivity. A. hudsonica was found to feed on the yellow-green microspheres without YTX at twice the rate of the bright blue microspheres with YTX. We also confirmed that microsphere color per se did not affect the feeding rates. The bright blue microspheres adsorbed 1.8–43.3 pg of YTX per microsphere, which is similar to the cell-specific yessotoxin content of toxic P. reticulatum found in natural environments. These results suggest that production of yessotoxin is advantageous for P. reticulatum by deterring predation by copepods.  相似文献   
197.
Fungal Pichia stipitis and bacterial Azotobacter vinelandii possess an alternative pathway of L-rhamnose metabolism, which is different from the known bacterial pathway. In a previous study (Watanabe S, Saimura M & Makino K (2008) Eukaryotic and bacterial gene clusters related to an alternative pathway of non-phosphorylated L-rhamnose metabolism. J Biol Chem283, 20372-20382), we identified and characterized the gene clusters encoding the four metabolic enzymes [L-rhamnose 1-dehydrogenase (LRA1), L-rhamnono-gamma-lactonase (LRA2), L-rhamnonate dehydratase (LRA3) and l-2-keto-3-deoxyrhamnonate aldolase (LRA4)]. In the known and alternative L-rhamnose pathways, L-lactaldehyde is commonly produced from l-2-keto-3-deoxyrhamnonate and L-rhamnulose 1-phosphate by each specific aldolase, respectively. To estimate the metabolic fate of L-lactaldehyde in fungi, we purified L-lactaldehyde dehydrogenase (LADH) from P. stipitis cells L-rhamnose-grown to homogeneity, and identified the gene encoding this enzyme (PsLADH) by matrix-assisted laser desorption ionization-quadruple ion trap-time of flight mass spectrometry. In contrast, LADH of A. vinelandii (AvLADH) was clustered with the LRA1-4 gene on the genome. Physiological characterization using recombinant enzymes revealed that, of the tested aldehyde substrates, L-lactaldehyde is the best substrate for both PsLADH and AvLADH, and that PsLADH shows broad substrate specificity and relaxed coenzyme specificity compared with AvLADH. In the phylogenetic tree of the aldehyde dehydrogenase superfamily, PsLADH is poorly related to the known bacterial LADHs, including that of Escherichia coli (EcLADH). However, despite its involvement in different L-rhamnose metabolism, AvLADH belongs to the same subfamily as EcLADH. This suggests that the substrate specificities for L-lactaldehyde between fungal and bacterial LADHs have been acquired independently.  相似文献   
198.
199.
Dilated cardiomyopathy often results from autoimmunity triggered by microbial infections during myocarditis. However, it remains unclear how immunological disorders are implicated in pathogenesis of autoimmune myocarditis. Here, we demonstrated that Sema4A, a class IV semaphorin, plays key roles in experimental autoimmune myocarditis (EAM). Dendritic cells pulsed with myosin heavy chain-α peptides induced severe myocarditis in wild-type mice, but not in Sema4A-deficient mice. In adoptive transfer experiments, CD4+ T-cells from wild-type mice induced severe myocarditis, while CD4+ T-cells from Sema4A-deficient mice exhibited considerably attenuated myocarditis. Our results indicated that Sema4A is critically involved in EAM by regulating differentiation of T-cells.  相似文献   
200.
Imai K  Suzuki Y  Mae T  Makino A 《Annals of botany》2008,101(1):135-144
BACKGROUND AND AIMS: The amount of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) synthesized in a leaf is closely correlated with N influx into the leaf throughout its lifetime. Rubisco synthesis and N influx are most active in the young leaf during expansion, but are very limited in the senescent leaf. However, it is not established whether Rubisco synthesis can be observed if N influx is increased, even in a very senescent leaf. This study first investigated changes in the relationships between rbcS and rbcL mRNA contents and Rubisco synthesis per unit of leaf mass with leaf senescence. Next, leaves were removed during late senescence, to examine whether Rubisco synthesis is re-stimulated in very senescent leaves by an increase in N influx. METHODS: Different N concentrations (1 and 4 mm) were supplied to Oryza sativa plants at the early (full expansion), middle and late stages (respectively 8 and 16 d after full expansion) of senescence of the eighth leaf. To enhance N influx into the eighth leaf 16 d after full expansion, all leaf blades on the main stem, except for the eighth leaf, and all tillers were removed and plants received 4 mm N (removal treatment). KEY RESULTS: Rubisco synthesis, rbcS and rbcL mRNAs and the translational efficiencies of rbcS and rbcL mRNAs decreased with leaf senescence irrespective of N treatments. However, in the removal treatment at the late stage, they increased more strongly with an increase in N influx than in intact plants. CONCLUSIONS: Although Rubisco synthesis and rbcS and rbcL mRNAs decrease with leaf senescence, leaves at the late stage of senescence have the potential actively to synthesize Rubisco with an increase in N influx.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号