首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2992篇
  免费   259篇
  国内免费   4篇
  2023年   10篇
  2022年   11篇
  2021年   44篇
  2020年   15篇
  2019年   15篇
  2018年   37篇
  2017年   26篇
  2016年   57篇
  2015年   82篇
  2014年   98篇
  2013年   173篇
  2012年   203篇
  2011年   174篇
  2010年   106篇
  2009年   105篇
  2008年   167篇
  2007年   197篇
  2006年   186篇
  2005年   185篇
  2004年   166篇
  2003年   153篇
  2002年   166篇
  2001年   67篇
  2000年   59篇
  1999年   62篇
  1998年   39篇
  1997年   46篇
  1996年   31篇
  1995年   30篇
  1994年   34篇
  1993年   33篇
  1992年   40篇
  1991年   45篇
  1990年   29篇
  1989年   51篇
  1988年   35篇
  1987年   26篇
  1986年   29篇
  1985年   26篇
  1984年   16篇
  1983年   18篇
  1982年   19篇
  1980年   10篇
  1979年   13篇
  1978年   10篇
  1977年   9篇
  1976年   9篇
  1975年   9篇
  1974年   11篇
  1968年   9篇
排序方式: 共有3255条查询结果,搜索用时 15 毫秒
121.
Phosphorus (P) is an essential mineral nutrient for plants. Nevertheless, excessive P accumulation in leaf mesophyll cells causes necrotic symptoms in land plants; this phenomenon is termed P toxicity. However, the detailed mechanisms underlying P toxicity in plants have not yet been elucidated. This study aimed to investigate the molecular mechanism of P toxicity in rice. We found that under excessive inorganic P (Pi) application, Rubisco activation decreased and photosynthesis was inhibited, leading to lipid peroxidation. Although the defence systems against reactive oxygen species accumulation were activated under excessive Pi application conditions, the Cu/Zn-type superoxide dismutase activities were inhibited. A metabolic analysis revealed that excessive Pi application led to an increase in the cytosolic sugar phosphate concentration and the activation of phytic acid synthesis. These conditions induced mRNA expression of genes that are activated under metal-deficient conditions, although metals did accumulate. These results suggest that P toxicity is triggered by the attenuation of both photosynthesis and metal availability within cells mediated by phytic acid accumulation. Here, we discuss the whole phenomenon of P toxicity, beginning from the accumulation of Pi within cells to death in land plants.  相似文献   
122.
Methylation-specific fluorescence in situ hybridization (MeFISH) was developed for microscopic visualization of DNA methylation status at specific repeat sequences in individual cells. MeFISH is based on the differential reactivity of 5-methylcytosine and cytosine in target DNA for interstrand complex formation with osmium and bipyridine-containing nucleic acids (ICON). Cell nuclei and chromosomes hybridized with fluorescence-labeled ICON probes for mouse major and minor satellite repeats were treated with osmium for crosslinking. After denaturation, fluorescent signals were retained specifically at satellite repeats in wild-type, but not in DNA methyltransferase triple-knockout (negative control) mouse embryonic stem cells. Moreover, using MeFISH, we successfully detected hypomethylated satellite repeats in cells from patients with immunodeficiency, centromeric instability and facial anomalies syndrome and 5-hydroxymethylated satellite repeats in male germ cells, the latter of which had been considered to be unmethylated based on anti-5-methylcytosine antibody staining. MeFISH will be suitable for a wide range of applications in epigenetics research and medical diagnosis.  相似文献   
123.
Human immunodeficiency virus type 1 (HIV-1) replication in macaque cells is restricted mainly by antiviral cellular APOBEC3, TRIM5α/TRIM5CypA, and tetherin proteins. For basic and clinical HIV-1/AIDS studies, efforts to construct macaque-tropic HIV-1 (HIV-1mt) have been made by us and others. Although rhesus macaques are commonly and successfully used as infection models, no HIV-1 derivatives suitable for in vivo rhesus research are available to date. In this study, to obtain novel HIV-1mt clones that are resistant to major restriction factors, we altered Gag and Vpu of our best HIV-1mt clone described previously. First, by sequence- and structure-guided mutagenesis, three amino acid residues in Gag-capsid (CA) (M94L/R98S/G114Q) were found to be responsible for viral growth enhancement in a macaque cell line. Results of in vitro TRIM5α susceptibility testing of HIV-1mt carrying these substitutions correlated well with the increased viral replication potential in macaque peripheral blood mononuclear cells (PBMCs) with different TRIM5 alleles, suggesting that the three amino acids in HIV-1mt CA are involved in the interaction with TRIM5α. Second, we replaced the transmembrane domain of Vpu of this clone with the corresponding region of simian immunodeficiency virus SIVgsn166 Vpu. The resultant clone, MN4/LSDQgtu, was able to antagonize macaque but not human tetherin, and its Vpu effectively functioned during viral replication in a macaque cell line. Notably, MN4/LSDQgtu grew comparably to SIVmac239 and much better than any of our other HIV-1mt clones in rhesus macaque PBMCs. In sum, MN4/LSDQgtu is the first HIV-1 derivative that exhibits resistance to the major restriction factors in rhesus macaque cells.  相似文献   
124.
Cyclin-dependent kinase 5 (Cdk5) is a brain-specific membrane-bound protein kinase that is activated by binding to the p35 or p39 activator. Previous studies have focused on p35-Cdk5, and little is known regarding p39-Cdk5. The lack of functional understanding of p39-Cdk5 is due, in part, to the labile property of p39-Cdk5, which dissociates and loses kinase activity in nonionic detergent conditions. Here we investigated the structural basis for the instability of p39-Cdk5. p39 and p35 contain N-terminal p10 regions and C-terminal Cdk5 activation domains (AD). Although p35 and p39 show higher homology in the C-terminal AD than the N-terminal region, the difference in stability is derived from the C-terminal AD. Based on the crystal structures of the p25 (p35 C-terminal region including AD)-Cdk5 complex, we simulated the three-dimensional structure of the p39 AD-Cdk5 complex and found differences in the hydrogen bond network between Cdk5 and its activators. Three amino acids of p35, Asp-259, Asn-266, and Ser-270, which are involved in hydrogen bond formation with Cdk5, are changed to Gln, Gln, and Pro in p39. Because these three amino acids in p39 do not participate in hydrogen bond formation, we predicted that the number of hydrogen bonds between p39 and Cdk5 was reduced compared with p35 and Cdk5. Using substitution mutants, we experimentally validated that the difference in the hydrogen bond network contributes to the different properties between Cdk5 and its activators.  相似文献   
125.
A mixture of sphingomyelin (SM) and cholesterol (Chol) exhibits a characteristic lipid raft domain of the cell membranes that provides a platform to which various signal molecules as well as virus and bacterial proteins are recruited. Several proteins capable of specifically binding either SM or Chol have been reported. However, proteins that selectively bind to SM/Chol mixtures are less well characterized. In our screening for proteins specifically binding to SM/Chol liposomes, we identified a novel ortholog of Pleurotus ostreatus, pleurotolysin (Ply)A, from the extract of edible mushroom Pleurotus eryngii, named PlyA2. Enhanced green fluorescent protein (EGFP)-conjugated PlyA2 bound to SM/Chol but not to phosphatidylcholine/Chol liposomes. Cell surface labeling of PlyA2-EGFP was abolished after sphingomyelinase as well as methyl-β-cyclodextrin treatment, removing SM and Chol, respectively, indicating that PlyA2-EGFP specifically binds cell surface SM/Chol rafts. Tryptophan to alanine point mutation of PlyA2 revealed the importance of C-terminal tryptophan residues for SM/Chol binding. Our results indicate that PlyA2-EGFP is a novel protein probe to label SM/Chol lipid domains both in cell and model membranes.  相似文献   
126.
Mutations in more than 10 genes are reported to cause familial amyotrophic lateral sclerosis (ALS). Among these genes, optineurin (OPTN) is virtually the only gene that is considered to cause classical ALS by a loss‐of‐function mutation. Wild‐type optineurin (OPTNWT) suppresses nuclear factor‐kappa B (NF‐κB) activity, but the ALS‐causing mutant OPTN is unable to suppress NF‐κB activity. Therefore, we knocked down OPTN in neuronal cells and examined the resulting NF‐κB activity and phenotype. First, we confirmed the loss of the endogenous OPTN expression after siRNA treatment and found that NF‐κB activity was increased in OPTN‐knockdown cells. Next, we found that OPTN knockdown caused neuronal cell death. Then, overexpression of OPTNWT or OPTNE50K with intact NF‐κB‐suppressive activity, but not overexpression of ALS‐related OPTN mutants, suppressed the neuronal death induced by OPTN knockdown. This neuronal cell death was inhibited by withaferin A, which selectively inhibits NF‐κB activation. Lastly, involvement of the mitochondrial proapoptotic pathway was suggested for neuronal death induced by OPTN knockdown. Taken together, these results indicate that inappropriate NF‐κB activation is the pathogenic mechanism underlying OPTN mutation‐related ALS.

  相似文献   

127.
128.
129.
Recent advances in neuroscience and immunology have revealed a bidirectional interaction between the nervous and immune systems. Therefore, the gastrointestinal tract may be modulated by neuro–immune interactions, but little information about this interaction is available. Intrinsic and extrinsic primary afferent neurons play an important role in this interaction because of their abilities to sense, process and transmit various information in the intestinal microenvironment. Calcitonin gene-related peptide (CGRP) is exclusively contained in intrinsic and extrinsic primary afferent neurons in the mouse intestine. Therefore, we investigated CGRP-immunoreactive nerve fibers in the colonic mucosa of mice induced to develop food allergy. CGRP-immunoreactive nerve fibers were specifically increased with the development of food allergy, and the fibers were juxtaposed to mucosal mast cells in the colonic mucosa of food allergy mice. Denervation of the extrinsic afferent neurons using neonatal capsaicin treatment did not affect the development of food allergy or the density and distribution of CGRP-immunoreactive nerve fibers in the colonic mucosa of food allergy mice. Furthermore, the mRNA and plasma level of CGRP was increased in food allergy mice. These results suggest that the activation of intrinsic primary afferent neurons in the intestine contributes to the development and pathology of food allergy.  相似文献   
130.
The nematode Sphaerularia vespae only parasitizes hornet queens and deprives them of fertility. To elucidate its transmission route, we observed the behavior of overwintered queens of Vespa simillima found around decayed logs of fallen trees—the principal hibernation sites for this species. We found that overwintered queens frequently visited those decayed logs in summer (late June to mid-August), hovering or walking on the surfaces of the logs, and sometimes entering holes or cracks there. These queens, unlike those visiting the hibernation sites in the fall, did not excavate wood to make their hibernacula, but often released juvenile nematodes there. In 25 % of the entries observed, we confirmed that juvenile nematodes had been released from the tips of the hornet’s gasters and thus transferred to the decayed logs. The timing of the host’s initial visit to decayed logs for nematode transmission corresponded well with the hatching of juveniles within the host’s body. These results suggest that the parasitic nematode manipulates its host to visit decayed logs in summer for its own transmission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号