首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1761篇
  免费   135篇
  国内免费   1篇
  1897篇
  2023年   6篇
  2022年   18篇
  2021年   24篇
  2020年   19篇
  2019年   13篇
  2018年   18篇
  2017年   19篇
  2016年   36篇
  2015年   46篇
  2014年   53篇
  2013年   111篇
  2012年   88篇
  2011年   103篇
  2010年   71篇
  2009年   61篇
  2008年   116篇
  2007年   98篇
  2006年   100篇
  2005年   103篇
  2004年   115篇
  2003年   91篇
  2002年   91篇
  2001年   36篇
  2000年   49篇
  1999年   35篇
  1998年   21篇
  1997年   15篇
  1996年   16篇
  1995年   13篇
  1994年   11篇
  1993年   15篇
  1992年   35篇
  1991年   24篇
  1990年   17篇
  1989年   31篇
  1988年   28篇
  1987年   22篇
  1986年   23篇
  1985年   17篇
  1984年   10篇
  1983年   10篇
  1982年   11篇
  1981年   11篇
  1980年   8篇
  1979年   10篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1974年   5篇
  1972年   3篇
排序方式: 共有1897条查询结果,搜索用时 15 毫秒
881.
Human and rodent cells proficient and deficient in non-homologous end joining (NHEJ) were irradiated with X rays, 70 keV/microm carbon ions, and 200 keV/microm iron ions, and the biological effects on these cells were compared. For wild-type CHO and normal human fibroblast (HFL III) cells, exposure to iron ions yielded the lowest cell survival, followed by carbon ions and then X rays. NHEJ-deficient xrs6 (a Ku80 mutant of CHO) and 180BR human fibroblast (DNA ligase IV mutant) cells showed similar cell survival for X and carbon-ion irradiation (RBE = approximately 1.0). This phenotype is likely to result from a defective NHEJ protein because xrs6-hamKu80 cells (xrs6 cells corrected with the wild-type KU80 gene) exhibited the wild-type response. At doses higher than 1 Gy, NHEJ-defective cells showed a lower level of survival with iron ions than with carbon ions or X rays, possibly due to inactivation of a radioresistant subpopulation. The G(1) premature chromosome condensation (PCC) assay with HFL III cells revealed LET-dependent impairment of repair of chromosome breaks. Additionally, iron-ion radiation induced non-repairable chromosome breaks not observed with carbon ions or X rays. PCC studies with 180BR cells indicated that the repair kinetics after exposure to carbon and iron ions behaved similarly for the first 6 h, but after 24 h the curve for carbon ions approached that for X rays, while the curve for iron ions remained high. These chromosome data reflect the existence of a slow NHEJ repair phase and severe biological damage induced by iron ions. The auto-phosphorylation of DNA-dependent protein kinase catalytic subunits (DNA-PKcs), an essential NHEJ step, was delayed significantly by high-LET carbon- and iron-ion radiation compared to X rays. This delay was further emphasized in NHEJ-defective 180BR cells. Our results indicate that high-LET radiation induces complex DNA damage that is not easily repaired or is not repaired by NHEJ even at low radiation doses such as 2 Gy.  相似文献   
882.
Maki JL  Krishnan B  Gierasch LM 《Biochemistry》2012,51(7):1369-1379
The SecA molecular nanomachine in bacteria uses energy from ATP hydrolysis to drive post-translational secretion of preproteins through the SecYEG translocon. Cytosolic SecA exists in a dimeric, "closed" state with relatively low ATPase activity. After binding to the translocon, SecA undergoes major conformational rearrangement, leading to a state that is structurally more "open", has elevated ATPase activity, and is active in translocation. The structural details underlying this conformational change in SecA remain incompletely defined. Most SecA crystal structures report on the cytosolic form; only one structure sheds light on a form of SecA that has engaged the translocon. We have used mild destabilization of SecA to trigger conformational changes that mimic those in translocation-active SecA and thus study its structural changes in a simplified, soluble system. Results from circular dichroism, tryptophan fluorescence, and limited proteolysis demonstrate that the SecA conformational reorganization involves disruption of several domain-domain interfaces, partial unfolding of the second nucleotide binding fold (NBF) II, partial dissociation of the helical scaffold domain (HSD) from NBF I and II, and restructuring of the 30 kDa C-terminal region. These changes account for the observed high translocation SecA ATPase activity because they lead to the release of an inhibitory C-terminal segment (called intramolecular regulator of ATPase 1, or IRA1) and of constraints on NBF II (or IRA2) that allow it to stimulate ATPase activity. The observed conformational changes thus position SecA for productive interaction with the SecYEG translocon and for transfer of segments of its passenger protein across the translocon.  相似文献   
883.
Rosaceae is a large family, however, our understanding of its phylogeny is based largely on morphological observations. To understand the relationship between subfamilies Rosoideae, Amygdaloideae, Maloideae and Spiraeoideae at a molecular level, we isolated and compared the plant phosphatidyl ethanolamine-binding protein-like genes TERMINAL FLOWER1 (TFL1)-like and CENTRORADIALIS (CEN)-like, which are involved in the control of shoot meristem identity and flowering time. A comparison of gene structures and phylogenetic tree analyses by the Neighbor-Joining method showed that each of the two TFL1-like (MdTFL1-1 and MdTFL1-2) and CEN-like genes (MdCENa and MdCENb) in Maloideae were classified into two distinct clades. The TFL1-like and CEN-like genes of Gillenia in Spiraeoideae belonged to monophyletic Maloideae groups, suggesting that Gillenia and Maloideae have a common near ancestor. However, the Gillenia TFL1-like gene does not contain the insertion sequence of the third intron that is found in MdTFL1-2-like genes of the members of Maloideae such as apple, Korean whitebeam, quince, and Siberian mountain ash. Therefore, after the Maloideae ancestor genome became polyploid through hybridization between Gillenia-like species or genome doubling, an insertion sequence of the third intron of MdTFL1-2-like genes was generated.  相似文献   
884.
Necrotic cell death is prevalent in many different pathological disease states and in traumatic injury. Necroptosis is a form of necrosis that stems from specific signaling pathways, with the key regulator being receptor interacting protein 1 (RIP1), a serine/threonine kinase. Specific inhibitors of RIP1, termed necrostatins, are potent inhibitors of necroptosis. Necrostatins are structurally distinct from one another yet still possess the ability to inhibit RIP1 kinase activity. To further understand the differences in the binding of the various necrostatins to RIP1 and to develop a robust high-throughput screening (HTS) assay, which can be used to identify new classes of RIP1 inhibitors, we synthesized fluorescein derivatives of Necrostatin-1 (Nec-1) and Nec-3. These compounds were used to establish a fluorescence polarization (FP) assay to directly measure the binding of necrostatins to RIP1 kinase. The fluorescein-labeled compounds are well suited for HTS because the assays have a dimethyl sulfoxide (DMSO) tolerance up to 5% and Z' scores of 0.62 (fluorescein-Nec-1) and 0.57 (fluorescein-Nec-3). In addition, results obtained from the FP assays and ligand docking studies provide insights into the putative binding sites of Nec-1, Nec-3, and Nec-4.  相似文献   
885.

Background

X11-family proteins, including X11, X11-like (X11L) and X11-like 2 (X11L2), bind to the cytoplasmic domain of amyloid β-protein precursor (APP) and regulate APP metabolism. Both X11 and X11L are expressed specifically in brain, while X11L2 is expressed ubiquitously. X11L is predominantly expressed in excitatory neurons, in contrast to X11, which is strongly expressed in inhibitory neurons. In vivo gene-knockout studies targeting X11, X11L, or both, and studies of X11 or X11L transgenic mice have reported that X11-family proteins suppress the amyloidogenic processing of endogenous mouse APP and ectopic human APP with one exception: knockout of X11, X11L or X11L2 has been found to suppress amyloidogenic metabolism in transgenic mice overexpressing the human Swedish mutant APP (APPswe) and the mutant human PS1, which lacks exon 9 (PS1dE9). Therefore, the data on X11-family protein function in transgenic human APP metabolism in vivo are inconsistent.

Results

To confirm the interaction of X11L with human APP ectopically expressed in mouse brain, we examined the amyloidogenic metabolism of human APP in two lines of human APP transgenic mice generated to also lack X11L. In agreement with previous reports from our lab and others, we found that the amyloidogenic metabolism of human APP increased in the absence of X11L.

Conclusion

X11L appears to aid in the suppression of amyloidogenic processing of human APP in brain in vivo, as has been demonstrated by previous studies using several human APP transgenic lines with various genetic backgrounds. X11L appears to regulate human APP in a manner similar to that seen in endogenous mouse APP metabolism.
  相似文献   
886.
887.
The translational regulation of maternal mRNAs is one of the most important steps in the control of temporal-spatial gene expression during oocyte maturation and early embryogenesis in various species. Recently, it has become clear that protein components of mRNPs play essential roles in the translational regulation of maternal mRNAs. In the present study, we investigated the function of P100 in Xenopus oocytes. P100 exhibits sequence conservation with budding yeast Pat1 and is likely the orthologue of human Pat1a (also called PatL2). P100 is maternally expressed in immature oocytes, but disappears during oocyte maturation. In oocytes, P100 is an RNA binding component of ribosome-free mRNPs, associating with other mRNP components such as Xp54, xRAP55 and CPEB. Translational repression by overexpression of P100 occurred when reporter mRNAs were injected into oocytes. Intriguingly, we found that when P100 was overexpressed in the oocytes, the kinetics of oocyte maturation was considerably retarded. In addition, overexpression of P100 in oocytes significantly affected the accumulation of c-Mos and cyclin B1 during oocyte maturation. These results suggest that P100 plays a role in regulating the translation of specific maternal mRNAs required for the progression of Xenopus oocyte maturation.  相似文献   
888.
Na+ and K+ homeostasis are crucial for plant growth and development. Two HKT transporter/channel classes have been characterized that mediate either Na+ transport or Na+ and K+ transport when expressed in Xenopus laevis oocytes and yeast. However, the Na+/K+ selectivities of the K+-permeable HKT transporters have not yet been studied in plant cells. One study expressing 5′ untranslated region-modified HKT constructs in yeast has questioned the relevance of cation selectivities found in heterologous systems for selectivity predictions in plant cells. Therefore, here we analyze two highly homologous rice (Oryza sativa) HKT transporters in plant cells, OsHKT2;1 and OsHKT2;2, that show differential K+ permeabilities in heterologous systems. Upon stable expression in cultured tobacco (Nicotiana tabacum) Bright-Yellow 2 cells, OsHKT2;1 mediated Na+ uptake, but little Rb+ uptake, consistent with earlier studies and new findings presented here in oocytes. In contrast, OsHKT2;2 mediated Na+-K+ cotransport in plant cells such that extracellular K+ stimulated OsHKT2;2-mediated Na+ influx and vice versa. Furthermore, at millimolar Na+ concentrations, OsHKT2;2 mediated Na+ influx into plant cells without adding extracellular K+. This study shows that the Na+/K+ selectivities of these HKT transporters in plant cells coincide closely with the selectivities in oocytes and yeast. In addition, the presence of external K+ and Ca2+ down-regulated OsHKT2;1-mediated Na+ influx in two plant systems, Bright-Yellow 2 cells and intact rice roots, and also in Xenopus oocytes. Moreover, OsHKT transporter selectivities in plant cells are shown to depend on the imposed cationic conditions, supporting the model that HKT transporters are multi-ion pores.Intracellular Na+ and K+ homeostasis play vital roles in growth and development of higher plants (Clarkson and Hanson, 1980). Low cytosolic Na+ and high K+/Na+ ratios aid in maintaining an osmotic and biochemical equilibrium in plant cells. Na+ and K+ influx and efflux across membranes require the function of transmembrane Na+ and K+ transporters/channels. Several Na+-permeable transporters have been characterized in plants (Zhu, 2001; Horie and Schroeder, 2004; Apse and Blumwald, 2007). Na+/H+ antiporters mediate sequestration of Na+ into vacuoles under salt stress conditions in plants (Blumwald and Poole, 1985, 1987; Sze et al., 1999). Na+ (cation)/H+ antiporters are encoded by six AtNHX genes in Arabidopsis (Arabidopsis thaliana; Apse et al., 1999; Gaxiola et al., 1999; Yokoi et al., 2002; Aharon et al., 2003). A distinct Na+/H+ antiporter, Salt Overly Sensitive1, mediates Na+/H+ exchange at the plasma membrane and mediates cellular Na+ extrusion (Shi et al., 2000, 2002; Zhu, 2001; Ward et al., 2003). Electrophysiological analyses reveal that voltage-independent channels, also named nonselective cation channels, mediate Na+ influx into roots under high external Na+ concentrations (Amtmann et al., 1997; Tyerman et al., 1997; Buschmann et al., 2000; Davenport and Tester, 2000); however, the underlying genes remain unknown.Potassium is the most abundant cation in plants and an essential nutrient for plant growth. The Arabidopsis genome includes 13 genes encoding KUP/HAK/KT transporters (Quintero and Blatt, 1997; Santa-María et al., 1997; Fu and Luan, 1998; Kim et al., 1998), and 17 genes have been identified encoding this family of transporters in rice (Oryza sativa ‘Nipponbare’; Bañuelos et al., 2002). Several KUP/HAK/KT transporters have been characterized as mediating K+ uptake across the plasma membrane of plant cells (Rigas et al., 2001; Bañuelos et al., 2002; Gierth et al., 2005).Ionic balance, especially the Na+/K+ ratio, is a key factor of salt tolerance in plants (Niu et al., 1995; Maathuis and Amtmann, 1999; Shabala, 2000; Mäser et al., 2002a; Tester and Davenport, 2003; Horie et al., 2006; Apse and Blumwald, 2007; Chen et al., 2007; Gierth and Mäser, 2007). Salinity stress is a major problem for agricultural productivity of crops worldwide (Greenway and Munns, 1980; Zhu, 2001). The Arabidopsis AtHKT1;1 transporter plays a key role in salt tolerance of plants by mediating Na+ exclusion from leaves (Mäser et al., 2002a; Berthomieu et al., 2003; Gong et al., 2004; Sunarpi et al., 2005; Rus et al., 2006; Davenport et al., 2007; Horie et al., 2009). athkt1;1 mutations cause leaf chlorosis and elevated Na+ accumulation in leaves under salt stress conditions in Arabidopsis (Mäser et al., 2002a; Berthomieu et al., 2003; Gong et al., 2004; Sunarpi et al., 2005). AtHKT1;1 and its homolog in rice, OsHKT1;5 (SKC1), mediate leaf Na+ exclusion by removing Na+ from the xylem sap to protect plants from salinity stress (Ren et al., 2005; Sunarpi et al., 2005; Horie et al., 2006, 2009; Davenport et al., 2007).The land plant HKT gene family is divided into two classes based on their nucleic acid sequences and protein structures (Mäser et al., 2002b; Platten et al., 2006). Class 1 HKT transporters have a Ser residue at a selectivity filter position in the first pore loop, which is replaced by a Gly in all but one known class 2 HKT transporter (Horie et al., 2001; Mäser et al., 2002b; Garciadeblás et al., 2003). While the Arabidopsis genome includes only one HKT gene, AtHKT1;1 (Uozumi et al., 2000), seven full-length OsHKT genes were found in the japonica rice cv Nipponbare genome (Garciadeblás et al., 2003). Members of class 1 HKT transporters, AtHKT1;1 and SKC1/OsHKT1;5, have a relatively higher Na+-to-K+ selectivity in Xenopus laevis oocytes and yeast than class 2 HKT transporters (Uozumi et al., 2000; Horie et al., 2001; Mäser et al., 2002b; Ren et al., 2005). The first identified plant HKT transporter, TaHKT2;1 from wheat (Triticum aestivum), is a class 2 HKT transporter (Schachtman and Schroeder, 1994). TaHKT2;1 was found to mediate Na+-K+ cotransport and Na+ influx at high Na+ concentrations in heterologous expression systems (Rubio et al., 1995, 1999; Gassmann et al., 1996; Mäser et al., 2002b). Thus, class 1 HKT transporters have been characterized as Na+-preferring transporters with a smaller K+ permeability (Fairbairn et al., 2000; Uozumi et al., 2000; Su et al., 2003; Jabnoune et al., 2009), whereas class 2 HKT transporters function as Na+-K+ cotransporters or channels (Gassmann et al., 1996; Corratgé et al., 2007). In addition, at millimolar Na+ concentrations, class 2 HKT transporters were found to mediate Na+ influx, without adding external K+ in Xenopus oocytes and yeast (Rubio et al., 1995, 1999; Gassmann et al., 1996; Horie et al., 2001). However, the differential cation transport selectivities of the two types of HKT transporters have not yet been analyzed and compared in plant cells.A study of the barley (Hordeum vulgare) and wheat class 2 transporters has suggested that the transport properties of HvHKT2;1 and TaHKT2;1 expressed in yeast are variable, depending on the constructs from which the transporter is expressed, and have led to questioning of the K+ transport activity of HKT transporters characterized in Xenopus oocytes and yeast (Haro et al., 2005). It was further proposed that the 5′ translation initiation of HKT proteins in yeast at nonconventional (non-ATG) sites affects the transporter selectivities of HKT transporters (Haro et al., 2005), although direct evidence for this has not yet been presented. However, recent research has shown a K+ permeability of OsHKT2;1 but not of OsHKT1;1 and OsHKT1;3 in Xenopus oocytes. These three OsHKT transporters show overlapping and also distinctive expression patterns in rice (Jabnoune et al., 2009).The report of Haro et al. (2005) has opened a central question addressed in this study: are the Na+/K+ transport selectivities of plant HKT transporters characterized in heterologous systems of physiological relevance in plant cells, or do they exhibit strong differences in the cation transport selectivities in these nonplant versus plant systems? To address this question, we analyzed the Na+/K+ transport selectivities of the OsHKT2;1 and OsHKT2;2 transporters expressed in cultured tobacco (Nicotiana tabacum ‘Bright-Yellow 2’ [BY2]) cells. OsHKT2;1 and OsHKT2;2 are two highly homologous HKT transporters from indica rice cv Pokkali, sharing 91% amino acid and 93% cDNA sequence identity (Horie et al., 2001). OsHKT2;1 mediates mainly Na+ uptake, which correlates with the presence of a Ser residue in the first pore loop of OsHKT2;1 (Horie et al., 2001, 2007; Mäser et al., 2002b; Garciadeblás et al., 2003). In contrast, OsHKT2;2 mediates Na+-K+ cotransport in Xenopus oocytes and yeast (Horie et al., 2001). Furthermore, at millimolar Na+ concentrations, OsHKT2;2 mediates Na+ influx in the absence of added K+ (Horie et al., 2001). Recent research on oshkt2;1 loss-of-function mutant alleles has revealed that OsHKT2;1 from japonica rice mediates a large Na+ influx component into K+-starved roots, thus compensating for lack of K+ availability (Horie et al., 2007). But the detailed Na+/K+ selectivities of Gly-containing, predicted K+-transporting class 2 HKT transporters have not yet been analyzed in plant cells.Here, we have generated stable OsHKT2;1- and OsHKT2;2-expressing tobacco BY2 cell lines and characterized the cell lines by ion content measurements and tracer influx studies to directly analyze unidirectional fluxes (Epstein et al., 1963). These analyses showed that OsHKT2;1 exhibits Na+ uptake activity in plant BY2 cells in the absence of added K+, but little K+ (Rb+), influx activity. In contrast, OsHKT2;2 was found to function as a Na+-K+ cotransporter/channel in plant BY2 cells, showing K+-stimulated Na+ influx and Na+-stimulated K+ (Rb+) influx. The differential K+ selectivities of the two OsHKT2 transporters were consistently reproduced by voltage clamp experiments using Xenopus oocytes here, as reported previously (Horie et al., 2001). OsHKT2;2 was also found to mediate K+-independent Na+ influx at millimolar external Na+ concentrations. These findings demonstrate that the cation selectivities of OsHKT2;1 and OsHKT2;2 in plant cells are consistent with past findings obtained from heterologous expression analyses under similar ionic conditions (Horie et al., 2001; Garciadeblás et al., 2003; Tholema et al., 2005). Furthermore, the shift in OsHKT2;2 Na+-K+ selectivity depending on ionic editions is consistent with the model that HKT transporters/channels are multi-ion pores (Gassmann et al., 1996; Corratgé et al., 2007). Classical studies of ion channels have shown that ion channels, in which multiple ions can occupy the pore at the same time, can change their relative selectivities depending on the ionic conditions (Hille, 2001). Moreover, the presence of external K+ and Ca2+ was found here to down-regulate OsHKT2;1-mediated Na+ influx both in tobacco BY2 cells and in rice roots. The inhibitory effect of external K+ on OsHKT2;1-mediated Na+ influx into intact rice roots, however, showed a distinct difference in comparison with that of BY2 cells, which indicates a possible posttranslational regulation of OsHKT2;1 in K+-starved rice roots.  相似文献   
889.
Promyelocytic leukemia nuclear bodies (PML‐NBs) are multiprotein complexes that include PML protein and localize in nuclear foci. PML‐NBs are implicated in multiple stress responses, including apoptosis, DNA repair, and p53‐dependent growth inhibition. ALT‐associated PML bodies (APBs) are specialized PML‐NBs that include telomere‐repeat binding‐factor TRF1 and are exclusively in telomerase‐negative tumors where telomere length is maintained through alternative (ALT) recombination mechanisms. We compared cell‐cycle and p53 responses in ALT‐positive cancer cells (U2OS) exposed to ionizing radiation (IR) or the p53 stabilizer Nutlin‐3a. Both IR and Nutlin‐3a caused growth arrest and comparable induction of p53. However, p21, whose gene p53 activates, displayed biphasic induction following IR and monophasic induction following Nutlin‐3a. p53 was recruited to PML‐NBs 3–4 days after IR, approximately coincident with the secondary p21 increase. These p53/PML‐NBs marked sites of apparently unrepaired DNA double‐strand breaks (DSBs), identified by colocalization with phosphorylated histone H2AX. Both Nutlin‐3a and IR caused a large increase in APBs that was dependent on p53 and p21 expression. Moreover, p21, and to a lesser extent p53, was recruited to APBs in a fraction of Nutlin‐3a‐treated cells. These data indicate (1) p53 is recruited to PML‐NBs after IR that likely mark unrepaired DSBs, suggesting p53 may either be further activated at these sites and/or function in their repair; (2) p53–p21 pathway activation increases the percentage of APB‐positive cells, (3) p21 and p53 are recruited to ALT‐associated PML‐NBs after Nutlin‐3a treatment, suggesting that they may play a previously unrecognized role in telomere maintenance. J. Cell. Biochem. 111: 1280–1290, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
890.
We tested whether geographic profiling (GP) can predict multiple nest locations of bumble bees. GP was originally developed in the field of criminology for predicting the area where an offender most likely resides on the basis of the actual crime sites and the predefined probability of crime interaction. The predefined probability of crime interaction in the GP model depends on the distance of a site from an offender's residence. We applied GP for predicting nest locations, assuming that foraging and nest sites were the crime sites and the offenders’ residences, respectively. We identified the foraging and nest sites of the invasive species Bombus terrestris in 2004, 2005, and 2006. We fitted GP model coefficients to the field data of the foraging and nest sites, and used GP with the fitting coefficients. GP succeeded in predicting about 10-30% of actual nests. Sensitivity analysis showed that the predictability of the GP model mainly depended on the coefficient value of buffer zone, the distance at the mode of the foraging probability. GP will be able to predict the nest locations of bumble bees in other area by using the fitting coefficient values measured in this study. It will be possible to further improve the predictability of the GP model by considering food site preference and nest density.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号