首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1695篇
  免费   135篇
  国内免费   1篇
  2023年   6篇
  2022年   17篇
  2021年   23篇
  2020年   19篇
  2019年   12篇
  2018年   18篇
  2017年   19篇
  2016年   36篇
  2015年   44篇
  2014年   51篇
  2013年   109篇
  2012年   83篇
  2011年   99篇
  2010年   68篇
  2009年   61篇
  2008年   114篇
  2007年   96篇
  2006年   97篇
  2005年   101篇
  2004年   114篇
  2003年   89篇
  2002年   90篇
  2001年   33篇
  2000年   43篇
  1999年   31篇
  1998年   19篇
  1997年   15篇
  1996年   16篇
  1995年   13篇
  1994年   10篇
  1993年   13篇
  1992年   32篇
  1991年   24篇
  1990年   17篇
  1989年   29篇
  1988年   28篇
  1987年   19篇
  1986年   21篇
  1985年   17篇
  1984年   10篇
  1983年   10篇
  1982年   11篇
  1981年   11篇
  1980年   8篇
  1979年   8篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1974年   5篇
  1969年   2篇
排序方式: 共有1831条查询结果,搜索用时 31 毫秒
91.
A recent phylogenetic study based only on chloroplast DNA (cpDNA) variation revealed that populations of an Isodon species are frequently embedded paraphyletically among other Isodon species. This phylogenetic discrepancy between species taxonomy and molecular phylogeny was considered to have resulted from chloroplast DNA captures and/or incomplete lineage sorting. To elucidate which of these factors was mainly responsible for the observed phylogenetic pattern, we performed phylogenetic analyses of multiple populations of Isodon species in Japan using cpDNA variation, three single-copy nuclear genes, and double-digest restriction-site-associated DNA sequencing (ddRAD-seq). Although a species often shared chlorotypes with other species, our phylogenetical analyses based on variation in the three single-copy nuclear genes and the ddRAD-seq data showed that most populations belonging to the same species were monophyletic at the species level, suggesting that chloroplast capture may have frequently occurred between Isodon species. Some populations of an intraspecific taxon were embedded paraphyletically within the species, regardless of the large amount of phylogenetic information in nuclear DNA; this incongruity may have resulted from incomplete lineage sorting.  相似文献   
92.
93.
Recombinant nematode anticoagulant protein c2 (rNAPc2) is a potent, factor Xa (fXa)-dependent small protein inhibitor of factor VIIa-tissue factor (fVIIa.TF), which binds to a site on fXa that is distinct from the catalytic center (exo-site). In the present study, the role of other fX derivatives in presenting rNAPc2 to fVIIa.TF is investigated. Catalytically active and active site blocked fXa, as well as a plasma-derived and an activation-resistant mutant of zymogen fX bound to rNAPc2 with comparable affinities (K(D) = 1-10 nm), and similarly supported the inhibition of fVIIa.TF (K(i)* = approximately 10 pm). The roles of phospholipid membrane composition in the inhibition of fVIIa.TF by rNAPc2 were investigated using TF that was either detergent-solubilized (TF(S)), or reconstituted into membranes, containing phosphatidylcholine (TF(PC)) or a mixture of phosphatidylcholine and phosphatidylserine (TF(PCPS)). In the absence of the fX derivative, inhibition of fVIIa.TF was similar for all three conditions (K(i) approximately 1 microm), whereas the addition of the fX derivative increased the respective inhibition by 35-, 150-, or 100,000-fold for TF(S), TF(PC), and TF(PCPS). The removal of the gamma-carboxyglutamic acid-containing domain from the fX derivative did not affect the binding to rNAPc2, but abolished the effect of factor Xa as a scaffold for the inhibition of fVIIa.TF by rNAPc2. The overall anticoagulant potency of rNAPc2, therefore, results from a coordinated recognition of an exo-site on fX/fXa and of the active site of fVIIa, both of which are properly positioned in the ternary fVIIa.TF.fX(a) complex assembled on an appropriate phospholipid surface.  相似文献   
94.
Genetic diversity was examined at 17 putative allozyme loci in 18 populations of the insular endemic plant Aster miyagii (Asteraceae). This species is geographically restricted to only three islands of the Ryukyu Islands and is on the federal list of threatened plants. Genetic differentiation within an island is small, suggesting that gene flow among populations on the same island is sufficiently large to prevent divergence. By contrast, genetic differentiation among islands is large, especially between Amamioshima Island and the other two islands, suggesting that gene flow between the islands is highly restricted. Two unique alleles are nearly fixed in populations on Amamioshima Island, which is the southernmost island of the three. Comparatively, genetic diversity is the smallest on Amamioshima Island. This genetic paucity on Amamioshima Island is probably a result of a population bottleneck at colonization or the small effective population size on this island. Genetic diversity at the species level of A. miyagii is larger than those of the species with a similar life history and of the congeneric widespread species, suggesting that the species has an old origin as an insular endemic species.  相似文献   
95.
96.
Using a pair of plasmids carrying the rpsL target sequence in different orientations to the replication origin, we analyzed a large number of forward mutations generated in wild-type and mismatch-repair deficient (MMR(-)) Escherichia coli cells to assess the effects of directionality of replication-fork movement on spontaneous mutagenesis and the generation of replication error. All classes of the mutations found in wild-type cells but not MMR(-) cells were strongly affected by the directionality of replication fork movement. It also appeared that the directionality of replication-fork movement governs the directionality of sequence substitution mutagenesis, which occurred in wild-type cells at a frequency comparable to base substitutions and single-base frameshift mutations. A very strong orientation-dependent hot-spot site for single-base frameshift mutations was discovered and demonstrated to be caused by the same process involved in sequence substitution mutagenesis. It is surprising that dnaE173, a potent mutator mutation specific for sequence substitution as well as single-base frameshift, did not enhance the frequency of the hot-spot frameshift mutation. Furthermore, the frequency of the hot-spot frameshift mutation was unchanged in the MMR(-) strain, whereas the mutHLS-dependent mismatch repair system efficiently suppressed the generation of single-base frameshift mutations. These results suggested that the hot-spot frameshift mutagenesis might be initiated at a particular location containing a DNA lesion, and thereby produce a premutagenic replication intermediate resistant to MMR. Significant numbers of spontaneous single-base frameshift mutations are probably caused by similar mechanisms.  相似文献   
97.
We have recently shown that single-base frameshifts were predominant among mutations induced within the rpsL target sequence upon oriC plasmid DNA replication in vitro. We found that the occurrence of +1 frameshifts at a run of 6 residues of dA/dT could be increased proportionally by increasing the concentration of dATP present in the in vitro replication. Using single-stranded circular DNA containing either the coding sequence of the rpsL gene or its complementary sequence, the +1 frameshift mutagenesis by DNA polymerase III holoenzyme of Escherichia coli was extensively examined. A(6) --> A(7) frameshifts occurred 30 to 90 times more frequently during DNA synthesis with the noncoding sequence (dT tract) template than with the coding sequence (dA tract). Excess dATP enhanced the occurrence of +1 frameshifts during DNA synthesis with the dT tract template, but no other dNTPs showed such an effect. In the presence of 0.1 mM dATP, the A(6) --> A(7) mutagenesis with the dT tract template was not inhibited by 1.5 mM dCTP, which is complementary to the residue immediately upstream of the dT tract. These results strongly suggested that the A(6) --> A(7) frameshift mutagenesis possesses an asymmetric strand nature and that slippage errors leading to the +1 frameshift are made during chain elongation within the tract rather than by misincorporation of nucleotides opposite residues next to the tract.  相似文献   
98.
99.
100.
Cell-wall synthesis in Chlorella vulgaris, an autospore-forming alga, was observed using the cell wall-specific fluorescent dye Fluostain I. The observation suggested two clearly distinguishable stages in cell-wall synthesis: moderate synthesis during the cell-growth process and rapid synthesis at the cell-division stage. We used electron microscopy to examine the structural changes that occurred with growth in the premature daughter cell wall during the cell-growth and cell-division phases. The cell began to synthesize a new daughter cell wall shortly after its release from the autosporangium. A very thin daughter cell wall, with a thickness of about 2 nm, was formed inside the mother cell wall and completely enveloped the outer surface of the plasma membrane of the cell. The daughter cell wall gradually increased in thickness from 2 to 3.8 nm. During the protoplast-division phase in the cell-division stage, the daughter cell wall expanded on the surface of the invaginating plasma membrane of the cleavage furrow, accompanied by active synthesis of the cell wall, which increased in thickness from 3.8 to 6.1 nm. The daughter cell matured into an autospore while completely enclosed by its own thickening (from 6.1 to 17 nm) wall. Finally, the released daughter cell was enclosed by its own cell wall after the mother cell wall burst. The daughter cell with mature wall thickness (17–21 nm) emerged as a small, but complete, autospore.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号