首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   630篇
  免费   33篇
  国内免费   1篇
  2023年   2篇
  2022年   5篇
  2021年   11篇
  2020年   5篇
  2019年   11篇
  2018年   10篇
  2017年   13篇
  2016年   13篇
  2015年   36篇
  2014年   26篇
  2013年   34篇
  2012年   63篇
  2011年   56篇
  2010年   29篇
  2009年   24篇
  2008年   48篇
  2007年   37篇
  2006年   35篇
  2005年   48篇
  2004年   23篇
  2003年   45篇
  2002年   28篇
  2001年   10篇
  2000年   5篇
  1999年   8篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   2篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1977年   2篇
  1971年   1篇
  1969年   1篇
  1967年   1篇
  1966年   2篇
  1965年   1篇
排序方式: 共有664条查询结果,搜索用时 15 毫秒
91.
The Ets family protein BmEts is assumed to be implicated in determination of diapause in the embryogenesis of Bombyx mori. In this study, we found that expression of BmEts was increased in the fat body and other tissues of the 5th instar larvae in response to Escherichia coli injection. Cotransfection experiments using a silkworm cell line revealed that overexpression of BmEts significantly elevated the activity of lebocin promoter but not of cecropin B1, cecropin D, attacin, and moricin promoters. Activation of the lebocin promoter by BmEts was dependent on at least two κB elements and the most proximal GGAA/T motif located on the 5'-upstream region. BmEts further synergistically enhanced E. coli or BmRelish1-d2 (active form)-stimulated lebocin promoter activation. Two κB elements were also found to be involved in promoter activation by BmRelish1-d2 and in synergistic promoter activation by BmEts and BmRelish1-d2 in the silkworm cells. Specific binding of recombinant BmEts to the proximal κB element and the most proximal GGAA/T motif and interaction between BmEts and BmRelish1 were also observed. To our knowledge, this is the first report of an Ets family protein directly regulating immune-related genes in invertebrates.  相似文献   
92.
93.
Evolutionary distinctiveness measures of how evolutionarily isolated a species is relative to other members of its clade. Recently, distinctiveness metrics that explicitly incorporate time have been proposed for conservation prioritization. However, we found that such measures differ qualitatively in how well they capture the total amount of evolution (termed phylogenetic diversity, or PD) represented by a set of species. We used simulation and simple graph theory to explore this relationship with reference to phylogenetic tree shape. Overall, the distinctiveness measures capture more PD on more unbalanced trees and on trees with many splits near the present. The rank order of performance was robust across tree shapes, with apportioning measures performing best and node-based measures performing worst. A sample of 50 ultrametric trees from the literature showed the same patterns. Taken together, this suggests that distinctiveness metrics may be a useful addition to other measures of value for conservation prioritization of species. The simplest measure, the age of a species, performed surprisingly well, suggesting that new measures that focus on tree shape near the tips may provide a transparent alternative to more complicated full-tree approaches.  相似文献   
94.
Galectins are a taxonomically widespread family of galactose-binding proteins of which galectin-3 is known to modulate cell adhesion. Using single cell force spectroscopy, the contribution of galectin-3 to the adhesion of Madin-Darby canine kidney (MDCK) cells to different extracellular matrix proteins was investigated. When adhering to collagen-I or -IV, some cells rapidly entered an enhanced adhesion state, marked by a significant increase in the force required for cell detachment. Galectin-3-depleted cells had an increased probability of entering the enhanced adhesion state. Adhesion enhancement was specific to integrin alpha(2)beta(1), as it was not observed when cells adhered to extracellular matrix substrates by other integrins. The adhesion phenotype of galectin-3-depleted cells was mimicked in a galactoside-deficient MDCK cell line and could be complemented by the addition of recombinant galectin-3. We propose that galectin-3 influences integrin alpha(2)beta(1)-mediated adhesion complex formation by altering receptor clustering.  相似文献   
95.
Yeast Phs1 is the 3-hydroxyacyl-CoA dehydratase that catalyzes the third reaction of the four-step cycle in the elongation of very long-chain fatty acids (VLCFAs). In yeast, the hydrophobic backbone of sphingolipids, ceramide, consists of a long-chain base and an amide-linked C26 VLCFA. Therefore, defects in VLCFA synthesis would be expected to greatly affect sphingolipid synthesis. In fact, in this study we found that reduced Phs1 levels result in significant impairment of the conversion of ceramide to inositol phosphorylceramide. Phs1 proteins are conserved among eukaryotes, constituting a novel protein family. Phs1 family members exhibit no sequence similarity to other dehydratase families, so their active site sequence and catalytic mechanism have been completely unknown. Here, by mutating 22 residues conserved among Phs1 family members, we identified six amino acid residues important in Phs1 function, two of which (Tyr-149 and Glu-156) are indispensable. We also examined the membrane topology of Phs1 using an N-glycosylation reporter assay. Our results suggest that Phs1 is a membrane-spanning protein that traverses the membrane six times and has an N terminus and C terminus facing the cytosol. The important amino acids are concentrated in or near two of the six proposed transmembrane regions. Thus, we also propose a catalytic mechanism for Phs1 that is not unlike mechanisms used by other hydratases active in lipid synthesis.  相似文献   
96.
TPRA40/GPR175 is an orphan receptor whose physiological functions have not been found to date. In an attempt to generate transgenic mice that express an shRNA of TPRA40, we observed that the cell division of early mouse embryos that injected the short hairpin RNA expression vector was significantly accelerated compared with the control vector. The regulation of cell division by TPRA40 was also observed in HeLa cells. Since the C-terminal region of TPRA40 has been shown to be essential for the regulation of cell division, we performed yeast two-hybrid screening using the C-terminal region as bait. Nuclear antigen of 14 kDa (NA14), an autoantigen of Sj?gren's syndrome, was identified as a binding protein to the C-terminal region of TPRA40. The binding of TPRA40 and NA14 was confirmed by GST pull-down assay and co-immunoprecipitation assay. FLAG-TPRA40 is transported from the cytosol to the plasma membrane in time-dependent manner and the translocation was inhibited by GFP-NA14DeltaN, an N-terminal deletion mutant that cannot bind to microtubules but binds to TPRA40. TPRA40DeltaC, which cannot bind to NA 14, shows impaired transport to the plasma membrane. Finally, we found that the effect of TPRA40 on mouse embryogenesis is strengthened by GFP-NA14, but not by GFP or GFP-NA14DeltaN. These observations indicate that the functional plasma membrane transport of TPRA40 that regulates cell division of mouse embryos is mediated by NA14.  相似文献   
97.
Hydrocephalus is a significant clinical condition in humans and is known to be a multifactorial neurologic disorder. It has been thought that genetic factors are closely involved in the etiology of congenital hydrocephalus, but further investigation is required to elucidate the genetic architecture of hydrocephalus. By analyzing breeding records of a panel of inter-subspecific consomic mouse strains, we found that consomic strains with MSM/Ms (MSM) chromosomes 4, 5, 7, 11, 15, and 17 showed a significantly higher incidence of hydrocephalus, whereas both parental strains, MSM and C57BL/6J (B6), rarely showed this abnormality. Further analysis of the consomic Chr 17 strain revealed that apparently normal individuals of this strain also exhibited increased brain ventricle size compared to B6 and had larger individual variation of ventricle size within the strain. Thus, we concluded that hydrocephalus is an extreme phenotype of individual ventricle size variation. We then established and analyzed several subconsomic strains of Chr 17 to identify genetic factors related to hydrocephalus-like phenotype and successfully mapped one genetic locus around the proximal region of Chr 17.  相似文献   
98.
99.
The constitutively activated tyrosine kinase Fip1-like 1 (FIP1L1)-platelet-derived growth factor receptor α (PDGFRα) causes eosinophilic leukemia EoL-1 cells to proliferate. Recently, we demonstrated that histone deacetylase inhibitors suppressed this proliferation and induced the differentiation of EoL-1 cells into eosinophils in parallel with a decrease in the level of FIP1L1-PDGFRα. In this study, we analyzed the mechanism by which FIP1L1-PDGFRα induces the proliferation and whether the suppression of cell proliferation triggers the differentiation into eosinophils. The FIP1L1-PDGFRα inhibitor imatinib inhibited the proliferation of EoL-1 cells and decreased the level of the oncoprotein c-Myc as well as the phosphorylation of extracellular signal-regulated kinase and c-Jun N-terminal kinase (JNK). The proliferation of EoL-1 cells and expression of c-Myc were also inhibited by the MEK inhibitor U0126 and JNK inhibitor SP600125. The expression of the eosinophilic differentiation marker CCR3 was not induced by imatinib. These findings suggest that FIP1L1-PDGFRα induces the proliferation of EoL-1 cells through the induction of c-Myc expression via ERK and JNK signaling pathways, but is not involved in the inhibition of differentiation toward mature eosinophils.  相似文献   
100.
Damaged DNA-binding protein, DDB, is a heterodimer of p127 and p48 with a high specificity for binding to several types of DNA damage. Mutations in the p48 gene that cause the loss of DDB activity were found in a subset of xeroderma pigmentosum complementation group E (XP-E) patients and have linked to the deficiency in global genomic repair of cyclobutane pyrimidine dimers (CPDs) in these cells. Here we show that with a highly defined system of purified repair factors, DDB can greatly stimulate the excision reaction reconstituted with XPA, RPA, XPC.HR23B, TFIIH, XPF.ERCC1 and XPG, up to 17-fold for CPDs and approximately 2-fold for (6-4) photoproducts (6-4PPs), indicating that no additional factor is required for the stimulation by DDB. Transfection of the p48 cDNA into an SV40-transformed human cell line, WI38VA13, was found to enhance DDB activity and the in vivo removal of CPDs and 6-4PPs. Furthermore, the combined technique of recently developed micropore UV irradiation and immunostaining revealed that p48 (probably in the form of DDB heterodimer) accumulates at locally damaged DNA sites immediately after UV irradiation, and this accumulation is also observed in XP-A and XP-C cells expressing exogenous p48. These results suggest that DDB can rapidly translocate to the damaged DNA sites independent of functional XPA and XPC proteins and directly enhance the excision reaction by core repair factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号