首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   6篇
  2020年   1篇
  2018年   3篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2013年   7篇
  2012年   10篇
  2011年   14篇
  2010年   8篇
  2009年   14篇
  2008年   3篇
  2007年   8篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1989年   1篇
  1976年   2篇
  1975年   1篇
  1972年   2篇
  1954年   1篇
  1953年   1篇
排序方式: 共有97条查询结果,搜索用时 234 毫秒
61.
Insect c‐type lysozymes are antibacterial proteins that are synthesized in different organs with high activity against Gram‐positive bacteria. Because lysozymes possess muramidase activity, they also play an important role in the digestion of bacteria in Diptera. Triatomines express lysozyme‐encoding genes constitutively in the anterior region (cardia and stomach) of the midgut and the fat body after injection of bacteria into the haemocoel. The present study describes the overexpression of the Triatoma brasiliensis lysozyme 1 (lys1) in Escherichia coli. Recombinant T. brasiliensis Lys1 (TbLys1) is purified after solubilization of the inclusion bodies. The protein refolds successfully, showing muramidase activity against Micrococcus lysodeikticus lyophilized cells, after enterokinase cleavage of its thioredoxin fusion protein. In in‐gel zymograms and turbidimetric liquid assays TbLys1 is broadly active under alkaline and acid conditions, indicating a possible digestive function in the two physiologically different midgut regions of the bug: the stomach and small intestine. Muramidase activity is shown in the stomach and small intestine content of unfed bugs and bugs at different days after feeding, respectively. Western blot analysis identifies TbLys1 as lysozyme.  相似文献   
62.
The 14-3-3 proteins are known to play an important regulatory role in apoptosis, and various cell signaling cascades. However, no investigation on mosquito 14-3-3 has been reported. To investigate the role of 14-3-3 proteins in mosquito midgut cells undergoing apoptosis, we decided to take advantage of Anopheles gambiae genome data, and were able to find Ag14-3-3ζ cDNA and protein sequences from Ensembl ( http://www.ensembl.org ). Further in silico analysis using BLAST search revealed that Ag14-3-3ζ protein is a polypeptide of 248 amino acids, and shares high identity with 14-3-3ζ homologues from Aedes aegypti (100%), Drosophila melanogaster (96%) and Bombyx mori (93%). Due to the perfect match and high homology, we hypothesized that Ag14-3-3ζ peptide antibody may recognize 14-3-3ζ homologs from other anopheline mosquitoes and insects. We thus generated 14-3-3ζ polyclonal antibody against a unique region located in the C-terminal end of Ag14-3-3ζ after in silico epitope analysis. As expected, zoo-western blot analysis of 14-3-3 proteins revealed that a polyclonal antibody against Ag14-3-3ζ peptide recognizes 14-3-3 homologs from dipteran and lepidopteran insects. To our knowledge, this is the first report on polyclonal antibody production against mosquito 14-3-3ζ. The mosquito-based 14-3-3ζ antibody will be very useful for studying the functional characterization of 14-3-3ζ in the context of host–pathogen interactions in midgut and other immune cells.  相似文献   
63.
Rising atmospheric carbon dioxide (CO2) concentration is increasingly affecting food production but how plant diseases will influence production and quality of food under rising CO2 is not well understood. With increased plant biomass at high CO2 the stubble‐borne fungal pathogen Fusarium pseudograminearum causing crown rot (CR) of wheat may become more severe. We have studied inoculum production by Fusarium using fungal biomass per unit wheat stubble, stem browning from CR and the saprophytic fitness of Fusarium strains isolated from two wheat varieties grown in 2007 and 2008 at ambient and elevated CO2 in free‐air CO2 enrichment (FACE) with or without irrigation and once in a controlled environment. Fungal biomass, determined using primers for fungal ribosomal 18s and the TRI5 gene, increased significantly at elevated CO2 in two of the three studies. Stem browning increased significantly at elevated CO2 in the 2007 FACE study. At elevated CO2 increased stem browning was not influenced by irrigation in a susceptible variety but in a resistant variety stem browning increased by 68% without irrigation. Wheat variety was significant in regression models explaining stem browning and Fusarium biomass but pathogen biomass at the two CO2 levels was not significantly linked to stem browning. Fusarium isolates from ambient and elevated CO2 did not differ significantly in their saprophytic fitness measured by the rate of colonization of wheat straw. We show that under elevated CO2Fusarium inoculum in stubbles will be amplified from increased crop and pathogen biomass while unimpeded saprophytic fitness will retain its effectiveness. If resistant varieties cannot completely stop infection, Fusarium will rapidly colonize stubble to further increase inoculum once the crop is harvested. Research should move beyond documenting the influence of elevated CO2 to developing disease management strategies from improved knowledge of pathogen biology and host resistance under rising CO2.  相似文献   
64.
Over the past decade, the emergence of anthracnose disease has newly challenged the health of turfgrasses on North American golf courses, resulting in considerable economic loss. The fungus responsible for the outbreaks, Colletotrichum cereale , has also been identified from numerous natural grasses and cereal crops, although disease symptoms are generally absent. Here we utilize phylogenetic and population genetic analyses to determine the role of ecosystem in the advancement of turfgrass anthracnose and assess whether natural grass and/or cereal inhabitants are implicated in the epidemics. Using a four-gene nucleotide data set to diagnose the limits of phylogenetic species and population boundaries, we find that the graminicolous Colletotrichum diverged from a common ancestor into distinct lineages correspondent with host physiology (C3 or C4 photosynthetic pathways). In the C4 lineage, which includes the important cereal pathogens Colletotrichum graminicola , C. sublineolum , C. falcatum , C. eleusines , C. caudatum and several novel species, host specialization predominates, with host-associated lineages corresponding to isolated sibling species. Although the C3 lineage — C. cereale — is comprised of one wide host-range species, it is divided into 10 highly specialized populations corresponding to ecosystem and/or host plant, along with a single generalist population spread across multiple habitat types. Extreme differentiation between the specialized C. cereale populations suggests that asymptomatic nonturfgrass hosts are unlikely reservoirs of infectious disease propagules, but gene flow between the generalist population and the specialized genotypes provides an indirect mechanism for genetic exchange between otherwise isolated populations and ecosystems.  相似文献   
65.
Abscisic acid (ABA)-induced stomatal closure is mediated by a complex, guard cell signalling network involving nitric oxide (NO) as a key intermediate. However, there is a lack of information concerning the role of NO in the ABA-enhanced stomatal closure seen in dehydrated plants. The data herein demonstrate that, while nitrate reductase (NR)1-mediated NO generation is required for the ABA-induced closure of stomata in turgid leaves, it is not required for ABA-enhanced stomatal closure under conditions leading to rapid dehydration. The results also show that NO signalling in the guard cells of turgid leaves requires the ABA-signalling pathway to be both capable of function and active. The alignment of this NO signalling with guard cell Ca2+-dependent/independent ABA signalling is discussed. The data also highlight a physiological role for NO signalling in turgid leaves and show that stomatal closure during the light-to-dark transition requires NR1-mediated NO generation and signalling.  相似文献   
66.
Fire can often occur in aquatic ecosystems, which may affect aquatic invertebrates. Despite the importance of aquatic invertebrates to ecosystem function, the effect of fire on these environments has been little studied. We studied the effects of fire on aquatic invertebrates in artesian springs in the arid zone of South Australia. Artesian springs are a unique and threatened ecosystem, containing several rare and endemic species. Evidence suggests these wetlands were routinely burnt by indigenous Aboriginal people before European settlement over 100 years ago. Recently, burning has been suggested as a reinstated management tool to control the dominant reed Phragmites australis. A reduction in the cover of the reed may benefit the threatened flora and fauna through enhancement of water flow. Three artesian springs were burnt and aquatic invertebrates sampled from the burnt and three unburnt springs. A single fire in late winter completely burnt the dominant vegetation, followed by recovery of Phragmites over the following 2 years. A single fire event did not deplete populations of endemic aquatic invertebrates in artesian springs, but probably did not substantially benefit these populations either. Isopods, amphipods, ostracods and three species of hydrobiid snail survived the fire event, and most had increased in number 1 month post fire but then returned to pre‐burnt numbers by 1 year post fire. Morphospecies richness of all identified invertebrates increased over time in all springs, but did not differ appreciably between burnt and unburnt springs. If burning artesian springs is to be adopted as a management tool to suppress the growth of Phragmites australis, we conclude that the endemic aquatic invertebrates will survive a single burn event, without negative effect to their populations.  相似文献   
67.
Abstract: To study the abundance and occurrence of herbivore insects on plants it is important to consider plant characteristics that may control the insects. In this study the following hypotheses were tested: (i) an increase of plant architecture increases species richness and abundance of gall‐inducing insects and (ii) plant architecture increases gall survival and decreases parasitism. Two hundred and forty plants of Baccharis pseudomyriocephala Teodoro (Asteraceae) were sampled, estimating the number of shoots, branches and their biomass. Species richness and abundance of galling insects were estimated per module, and mortality of the galls was assessed. Plant architecture influenced positively species richness, abundance and survival of galls. However, mortality of galling insects by parasitoids was low (13.26%) and was not affected by plant architecture, thus suggesting that other plant characteristics (a bottom‐up pressure) might influence gall‐inducing insect communities more than parasitism (a top‐down pressure). The opposite effect of herbivore insects on plant characteristics must also be considered, and such effects may only be assessed through manipulative experiments.  相似文献   
68.
An experimental system is described for validating electrochemical oxygen sensors implanted in tissues. The system is a modified hamster window chamber in which a thin layer of vascularized tissue is held between two plates, one plate having an observation window and the other plate having an array of oxygen sensors. This arrangement permits simultaneous recording of oxygen sensor signals and nondestructive visualization of the tissue adjacent to the sensors over periods of 1 mo or more, without the inhibitory effects of anesthesia. The system provides a means for study of the effects of spatial and temporal oxygen distributions on the sensor signals and adaptation of the tissue structure over time. Examples are given of sensor recordings and images of tissues with implanted oxygen sensor arrays.  相似文献   
69.
70.
In this paper, a total of four species of the genus Lispe are treated. Of these, L. assimilis Wiedemann and L. litorea Fallén are reported for the first time in Korea. A key to the Korean species, their domestic localities, and some illustrations are given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号