首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2938篇
  免费   313篇
  国内免费   17篇
  3268篇
  2023年   6篇
  2022年   38篇
  2021年   67篇
  2020年   37篇
  2019年   51篇
  2018年   89篇
  2017年   63篇
  2016年   106篇
  2015年   156篇
  2014年   185篇
  2013年   222篇
  2012年   238篇
  2011年   248篇
  2010年   154篇
  2009年   139篇
  2008年   180篇
  2007年   164篇
  2006年   145篇
  2005年   160篇
  2004年   116篇
  2003年   104篇
  2002年   93篇
  2001年   82篇
  2000年   45篇
  1999年   52篇
  1998年   28篇
  1997年   17篇
  1996年   16篇
  1995年   16篇
  1994年   11篇
  1993年   13篇
  1992年   19篇
  1991年   10篇
  1990年   9篇
  1989年   21篇
  1988年   6篇
  1987年   12篇
  1986年   17篇
  1985年   8篇
  1984年   18篇
  1983年   12篇
  1982年   7篇
  1981年   14篇
  1980年   7篇
  1979年   6篇
  1977年   6篇
  1976年   6篇
  1975年   8篇
  1974年   9篇
  1965年   4篇
排序方式: 共有3268条查询结果,搜索用时 0 毫秒
121.
The interaction of one anticancer drug (caffeic acid phenethyl ester; CAPE) with three proteases (trypsin, pepsin and α-chymotrypsin) has been investigated with multispectral methods and molecular docking. As an active components in propolis, the findings are of great benefit to metabolism, design, and structural modification of drugs. The results show that CAPE has an obvious ability to quench the trypsin, pepsin, or α-chymotrypsin fluorescence mainly through a static quenching procedure. Trypsin has the largest binding affinity to CAPE, and α-chymotrypsin has the smallest binding affinity to CAPE. The data obtained from thermodynamic parameters and molecular docking prove that the spontaneously interaction between CAPE and each protease is mainly due to a combination of van der Waals (vdW) force and hydrogen bond (H-bond), controlled by an enthalpy-driven process. The binding force, strength, position, and the number of H-bond are further obtained from the results of molecular docking. Through ultraviolet spectroscopy, dynamic light scattering and circular dichroism experiments, the change in the protease secondary structure induced by CAPE was observed. Additionally, the addition of protease had a positive effect on the antioxidative activity of CAPE, and α-chymotrypsin has the greatest effect on the removal of 2,2-diphenyl-1-picrylhydrazyl free radicals by CAPE.  相似文献   
122.
123.
Dysregulation of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is involved in many chronic inflammatory diseases, including gouty arthritis. Activation of the NLRP3 inflammasome requires priming and activation signals: the priming signal controls the expression of NLRP3 and interleukin (IL)-1β precursor (proIL-1β), while the activation signal leads to the assembly of the NLRP3 inflammasome and to caspase-1 activation. Here, we reported the effects of the alcoholic extract of Taiwanese green propolis (TGP) on the NLRP3 inflammasome in vitro and in vivo. TGP inhibited proIL-1β expression by reducing nuclear factor kappa B activation and reactive oxygen species (ROS) production in lipopolysaccharide-activated macrophages. Additionally, TGP also suppressed the activation signal by reducing mitochondrial damage, ROS production, lysosomal rupture, c-Jun N-terminal kinases 1/2 phosphorylation and apoptosis-associated speck-like protein oligomerization. Furthermore, we found that TGP inhibited the NLRP3 inflammasome partially via autophagy induction. In the in vivo mouse model of uric acid crystal-induced peritonitis, TGP attenuated the peritoneal recruitment of neutrophils, and the levels of IL-1β, active caspase-1, IL-6 and monocyte chemoattractant protein-1 in lavage fluids. As a proof of principle, in this study, we purified a known compound, propolin G, from TGP and identified this compound as a potential inhibitor of the NLRP3 inflammasome. Our results indicated that TGP might be useful for ameliorating gouty inflammation via inhibition of the NLRP3 inflammasome.  相似文献   
124.
To better understand organelle genome evolution of the ulvophycean green alga Capsosiphon fulvescens, we sequenced and characterized its complete chloroplast genome. The circular chloroplast genome was 111,561 bp in length with 31.3% GC content that contained 108 genes including 77 protein‐coding genes, two copies of rRNA operons, and 27 tRNAs. In this analysis, we found the two types of isoform, called heteroplasmy, were likely caused by a flip‐flop organization. The flip‐flop mechanism may have caused structural variation and gene conversion in the chloroplast genome of C. fulvescens. In a phylogenetic analysis based on all available ulvophycean chloroplast genome data, including a new C. fulvescens genome, we found three major conflicting signals for C. fulvescens and its sister taxon Pseudoneochloris marina within 70 individual genes: (i) monophyly with Ulotrichales, (ii) monophyly with Ulvales, and (iii) monophyly with the clade of Ulotrichales and Ulvales. Although the 70‐gene concatenated phylogeny supported monophyly with Ulvales for both species, these complex phylogenetic signals of individual genes need further investigations using a data‐rich approach (i.e., organelle genome data) from broader taxon sampling.  相似文献   
125.
The ventral subiculum (vSub), a representative output structure of the hippocampus, serves as a main limbic region in mediating the brain's response to stress. There are three subtypes of subicular pyramidal neurons based on their firing patterns: regular-spiking (RS), weak-bursting (WB) and strong-bursting (SB) neurons, located differently along proximal–distal axis. Here, we found that chronic social defeat stress (CSDS) in mice increased the population of SB neurons but decreased RS neurons in the proximal vSub. Specific blockers of T-type calcium channels inhibited the burst firings with a concomitant reduction of afterdepolarization, suggesting that T-type calcium channels underlie the burst-spiking activity. Consistently, CSDS increased both T-type calcium currents and expression of Cav3.1 proteins, a subtype of T-type calcium channels, in the proximal vSub. Therefore, we conclude that CSDS-induced enhancement of Cav3.1 expression increased bursting neuronal population in the vSub, which may contribute to stress-related behaviors.  相似文献   
126.
Extracellular vesicles, which are highly conserved in most cells, contain biologically active substances. The vesicles and substances interact with cells and impact physiological mechanisms. The skin is the most external organ and is in direct contact with the external environment. Photoaging and skin damage are caused by extrinsic factors. The formation of wrinkles is a major indicator of skin aging and is caused by a decrease in collagen and hyaluronic acid. MMP-1 expression is also increased. Due to accruing damage, skin aging reduces the ability of the skin barrier, thereby lowering the skin’s ability to contain water and increasing the amount of water loss. L. plantarum suppresses various harmful bacteria by secreting an antimicrobial substance. L. plantarum is also found in the skin, and research on the interactions between the bacteria and the skin is in progress. Although several studies have investigated L. plantarum, there are only a limited number of studies on extracellular vesicles (EV) derived from L. plantarum, especially in relation to skin aging. Herein, we isolated EVs that were secreted from L. plantarum of women in their 20s (LpEVs). We then investigated the effect of LpEVs on skin aging in CCD986sk. We showed that LpEVs modulated the mRNA expression of ECM related genes in vitro. Furthermore, LpEVs suppressed wrinkle formation and pigmentation in clinical trials. These results demonstrated that LpEVs have a great effect on skin aging by regulating ECM related genes. In addition, our study offers important evidence on the depigmentation effect of LpEVs.  相似文献   
127.
128.
J C Mak  P J Barnes 《Peptides》1988,9(5):957-963
125I-Human calcitonin gene-related peptide (hCGRP) binding sites were localized in human and guinea pig lungs by an autoradiographic method. Scatchard analysis of saturation experiments from slide-mounted sections of guinea pig lung displayed specific 125I-hCGRP binding sites with a dissociation constant (Kd) of 0.72 +/- 0.05 nM (mean +/- S.E.M., n = 3) and a maximal number of binding sites (Bmax) of 133.4 +/- 5.6 fmol/mg protein. In both human and guinea pig lung, autoradiography revealed that CGRP binding sites were widely distributed, with particularly dense labeling over bronchial and pulmonary blood vessels of all sizes and alveolar walls. Airway smooth muscle and epithelium of large airways was sparsely labeled but no labeling was found over submucosal glands. This localization corresponds well to the reported pattern of CGRP-like immunoreactive innervation. The findings of localization of CGRP binding sites on bronchial and pulmonary blood vessels indicate that CGRP may be important in the regulation of airway and pulmonary blood flow.  相似文献   
129.
Akt is activated in response to an apoptotic signal   总被引:7,自引:0,他引:7  
Akt is a serine-threonine kinase known to exert antiapoptotic effects through several downstream targets. Akt is cleaved during mitochondrial-mediated apoptosis in a caspase-dependent manner. The reason for this is not clear, however, because Akt has not been demonstrated to be activated in response to mitochondrial apoptotic stimuli. Accordingly, we explored whether the well described mitochondrial apoptotic stimuli staurosporine (STS) and etoposide activate Akt and whether such activation impacts apoptosis. Both STS and etoposide activated Akt in NIH 3T3 cells, maximally at 8 and 2 h, respectively, preceding the onset of apoptosis and poly(ADP-ribose) polymerase cleavage. The overexpression of Akt delayed STS-induced apoptosis with an even more pronounced delay observed with overexpression of constitutively active Akt. Akt activation by proapoptotic stimuli lay upstream of mitochondria, because neither caspase inhibitors nor overexpression of Bcl-2 or Bcl-x(L) could prevent it. Activation depended on phosphatidylinositol 3-kinase activity, however. Conversely, inhibition of phosphatidylinositol 3-kinase with wortmannin sensitized cells to apoptosis initiated by STS. These data demonstrate that mitochondrial apoptotic stimuli also activate Akt and such activation modulates apoptosis in this setting.  相似文献   
130.
Apaf1 is a critical molecule in the mitochondria-dependent apoptotic pathway. Here we show that Apaf1-deficient embryonic fibroblasts died at a later phase of apoptotic induction, although these cells were resistant to various apoptotic stimulants at an early phase. Neither caspase 3 activation nor nuclear condensation was observed during this cell death of Apaf1-deficient cells. Electron microscopic examination revealed that death in response to apoptotic stimulation resembled necrosis in that nuclei were round and swollen with low electron density. Necrosis-like cell death was also observed in wild-type cells treated with z-VAD-fmk. Mitochondria were not only morphologically abnormal but functionally affected, since mitochondrial transmembrane potential (DeltaPsim) was lost even in cells with intact plasma membrane integrity. These mitochondrial alterations were also observed in the wild-type cells dying of apoptosis. Combined, these data suggest that cells without caspase activation, such as Apaf1-deficient cells or cells treated with caspase inhibitors, die of necrosis-like cell death with mitochondrial damage in response to "apoptotic stimulation."  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号