首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   800篇
  免费   40篇
  2022年   5篇
  2021年   21篇
  2020年   6篇
  2019年   6篇
  2018年   8篇
  2017年   15篇
  2016年   23篇
  2015年   25篇
  2014年   19篇
  2013年   28篇
  2012年   53篇
  2011年   51篇
  2010年   34篇
  2009年   18篇
  2008年   34篇
  2007年   34篇
  2006年   44篇
  2005年   38篇
  2004年   27篇
  2003年   32篇
  2002年   25篇
  2001年   21篇
  2000年   25篇
  1999年   19篇
  1998年   7篇
  1997年   4篇
  1994年   5篇
  1993年   4篇
  1992年   13篇
  1991年   11篇
  1990年   15篇
  1989年   13篇
  1988年   11篇
  1987年   15篇
  1986年   12篇
  1985年   12篇
  1984年   10篇
  1983年   6篇
  1982年   6篇
  1981年   4篇
  1979年   5篇
  1978年   6篇
  1977年   8篇
  1976年   7篇
  1975年   7篇
  1974年   4篇
  1973年   5篇
  1971年   4篇
  1970年   4篇
  1960年   4篇
排序方式: 共有840条查询结果,搜索用时 15 毫秒
81.
The mean linear intercept (L(m)) can be used to estimate the surface area for gas exchange in the lung. However, in recent years, it is most commonly used as an index for characterizing the enlargement of airspaces in emphysema and the associated severity of structural destruction in the lung. Specifically, an increase in L(m) is thought to result from an increase in airspace sizes. In this paper, we examined how accurately L(m) measures the linear dimensions of airspaces from histological sections and a variety of computer-generated test images. To this end, we developed an automated method for measuring linear intercepts from digitized images of tissue sections and calculate L(m) as their mean. We examined how the shape of airspaces and the variability of their sizes influence L(m) as well as the distribution of linear intercepts. We found that, for a relatively homogeneous enlargement of airspaces, L(m) was a reliable index for detecting emphysema. However, in the presence of spatial heterogeneities with a large variability of airspace sizes, L(m) did not significantly increase and sometimes even decreased compared with its value in normal tissue. We also developed an automated method for measuring the area and computed an equivalent diameter of each individual airspace that is independent of shape. Finally, we introduced new indexes based on the moments of diameter that we found to be more reliable than L(m) to characterize airspace enlargement in the presence of heterogeneities.  相似文献   
82.
The purpose of this investigation was to evaluate the effect of formulation factors on in vitro permeation of moxifloxacin from aqueous drop through freshly excised goat, sheep, and buffalo corneas. Aqueous isotonic ophthalmic solutions of moxifloxacin hydrochloride of different concentrations (pH 7.2) or 0.5% (wt/vol) solutions of different pH or 0.5% solutions (pH 7.2) containing different preservatives were made. Permeation characteristics of drug were evaluated by putting 1 mL formulation on freshly excised cornea (0.50 cm2) fixed between donor and receptor compartments of an all-glass modified Franz diffusion cell and measuring the drug permeated in the receptor (containing 10 mL bicarbonate ringer at 37°C under stirring) by spectrophotometry at 291 nm, after 120 minutes. Statistical analysis was done by one-way analysis of variance (ANOVA) followed by Dunnett’s test. Increase in drug concentration in the formulation resulted in an increase in the quantity permeated but a decrease in percentage permeation. Increase in pH of the solution from 5.5 to 7.2 increased drug permeation, indicating pH-dependent transport. Compared with control formulation, moxifloxacin 0.5% (wt/vol) solution (pH 7.2) containing disodium edetate (EDTA) (0.01% wt/vol) produced significantly (P<.05) higher permeation with all the corneas. Formulation with benzyl alcohol significantly (P<.05) increased permeation with buffalo cornea compared with its control. Presence of benzalkonium chloride (BAK) (0.01% wt/vol) and EDTA (0.01% wt/vol) in the formulation increased permeation to the maximum with all the corneas. The results suggest that moxifloxacin 0.5% ophthalmic solution (pH 7.2) containing BAK (0.01%) and EDTA (0.01%) provides increased in vitro ocular availability through goat, sheep, and buffalo corneas. Published: February 10, 2006 Formerly College of Pharmacy, University of Delhi, Pushp Vihar, Sector III, New Delhi-110017, India  相似文献   
83.
Chondrocytes, the only cell type present in articular cartilage, regulate tissue homeostasis by a fine balance of metabolism that includes both anabolic and catabolic activities. Therefore, the biology of chondrocytes is critical for understanding cartilage metabolism. One major limitation when studying primary chondrocytes in culture is their loss of phenotype. To overcome this hurdle, limited attempts have been made to develop human chondrocyte cell lines that retain the phenotype for use as a good surrogate model. In this study, we report a novel approach to the establishment and characterization of human articular cartilage‐derived chondrocyte cell lines. Adenoviral infection followed by culture of chondrocytes in 3‐dimensional matrix within 48 h post‐infection maintained the phenotype prior to clonal selection. Cells were then placed in culture either as monolayer, or in 3‐dimensional matrix of alginate or agarose. The clones were characterized by their basal gene expression profile of chondrocyte markers. Based on type II collagen expression, 21 clones were analyzed for gene expression following treatment with IL‐1 or BMP‐7 and compared to similarly stimulated primary chondrocytes. This resulted in selection of two clones that retained the chondrocyte phenotype as evidenced by expression of type II collagen and other extra‐cellular matrix molecules. In addition, one clone (AL‐4‐17) showed similar responses as primary chondrocytes when treated with IL‐1 or BMP‐7. In summary, this report provides a novel procedure to develop human articular cartilage‐derived chondrocyte cell lines, which preserve important characteristics of articular chondrocytes and represent a useful model to study chondrocyte biology. J. Cell. Physiol. 222: 695–702, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
84.
CARP-1, a novel apoptosis inducer, regulates apoptosis signaling by diverse agents, including adriamycin and growth factors. Epidermal growth factor receptor (EGFR)-related protein (ERRP), a pan-ErbB inhibitor, inhibits EGFR and stimulates apoptosis. Treatments of cells with ERRP or Iressa (an EGFR tyrosine kinase inhibitor) results in elevated CARP-1 levels, whereas antisense-dependent depletion of CARP-1 causes inhibition of apoptosis by ERRP. CARP-1 is a tyrosine-phosphorylated protein, and ERRP treatments cause elevated tyrosine phosphorylation of CARP-1. CARP-1 contains multiple, nonoverlapping apoptosis-inducing subdomains; one such subdomain is present within amino acids 1-198. Wild-type or CARP-1-(1-198) proteins that have substitution of tyrosine 192 to phenylalanine abrogate apoptosis by ERRP. In addition, apoptosis mediated by wild type or CARP-1-(1-198), and not CARP-1-(1-198(Y192F)), results in activation of caspase-9 and increased phosphorylation of p38 MAPK. However, the expression of dominant-negative forms of p38 MAPK activators MKK3 or MKK6 proteins inhibits apoptosis induced by both the full-length and truncated (amino acids 1-198) proteins. Together, data demonstrate that tyrosine 192 of CARP-1 is a target of apoptosis signaling, and CARP-1, in turn, promotes apoptosis by activating p38 MAPK and caspase-9.  相似文献   
85.
86.
The oxidative base damage, 8-oxo-7,8-dihydroguanine (8-oxoG) is a highly mutagenic lesion because replicative DNA polymerases insert adenine (A) opposite 8-oxoG. In mammalian cells, the removal of A incorporated across from 8-oxoG is mediated by the glycosylase MUTYH during base excision repair (BER). After A excision, MUTYH binds avidly to the abasic site and is thus product inhibited. We have previously reported that UV-DDB plays a non-canonical role in BER during the removal of 8-oxoG by 8-oxoG glycosylase, OGG1 and presented preliminary data that UV-DDB can also increase MUTYH activity. In this present study we examine the mechanism of how UV-DDB stimulates MUTYH. Bulk kinetic assays show that UV-DDB can stimulate the turnover rate of MUTYH excision of A across from 8-oxoG by 4–5-fold. Electrophoretic mobility shift assays and atomic force microscopy suggest transient complex formation between MUTYH and UV-DDB, which displaces MUTYH from abasic sites. Using single molecule fluorescence analysis of MUTYH bound to abasic sites, we show that UV-DDB interacts directly with MUTYH and increases the mobility and dissociation rate of MUTYH. UV-DDB decreases MUTYH half-life on abasic sites in DNA from 8800 to 590 seconds. Together these data suggest that UV-DDB facilitates productive turnover of MUTYH at abasic sites during 8-oxoG:A repair.  相似文献   
87.
Leishmania donovani, a protozoan parasite, causes a strong immunosuppression in a susceptible host and inflicts the fatal disease visceral leishmaniasis. Relatively high toxicity, low therapeutic index, and failure in reinstating host-protective anti-leishmanial immune responses have made anti-leishmanial drugs patient non-compliant and an immuno-modulatory treatment a necessity. Therefore, we have tested the anti-leishmanial efficacy of a combination of a novel immunomodulator, Mycobacterium indicus pranii (Mw), and an anti-leishmanial drug, Amphotericin B (AmpB). We observe that Mw alone or with a suboptimal dose of AmpB offers significant protection against L. donovani infection by activating the macrophages. Our experiments examining the anti-leishmanial activity of Mw alone or with AmpB also indicate a p38MAPK and ERK-1/2 regulated pro-inflammatory responses. The Mw-AmpB combination induced nitric oxide production, restored Th1 response, and significantly reduced parasite burden in wild type macrophages but not in IL-12-deficient macrophages indicating a pivotal role for IL-12 in the induction of host-protection by Mw and AmpB treatments. In addition, we observed that Mw alone or in combination with suboptimal dose of AmpB render protection against L. donovani infection in susceptible BALB/c mice. However, these treatments failed to render protection in IL-12-deficient mice in vivo which added further support that IL-12 played a central role in this chemo immunotherapeutic approach. Thus, we demonstrate a novel chemo-immunotherapeutic approach- Mw and AmpB crosstalk eliminating the parasite-induced immunosuppression and inducing collateral host-protective effects.  相似文献   
88.
The visceral form of leishmaniasis is the most severe form of the disease and of particular concern due to the emerging problem of HIV/visceral leishmaniasis (VL) co-infection in the tropics. Till date miltefosine, amphotericin B and pentavalent antimony compounds remain the main treatment regimens for leishmaniasis. However, because of severe side effects, there is an urgent need for alternative improved therapies to combat this dreaded disease. In the present study, we have used the murine model of leishmaniasis to evaluate the potential role played by soluble leishmanial antigen (SLA) pulsed-CpG-ODN stimulated dendritic cells (SLA-CpG-DCs) in restricting the intracellular leishmanial growth. We found that mice vaccinated with a single dose of SLA-pulsed DC stimulated by CpG-ODN were protected against a subsequent leishmanial challenge and had a dramatic reduction in parasite burden along with the generation of parasite specific cytotoxic T lymphocytes. Moreover, we demonstrate that the induction of protective immunity conferred by SLA-CpG-DCs depends entirely on the CXC chemokine IFN-γ-inducible protein 10 (CXCL10; IP-10). CXCL10 is directly involved in the generation of a parasite specific CD8+ T cell-mediated immune response. We observed significant reduction of CD8+ T cells in mice depleted of CXCL10 suggesting a direct role of CXCL10 in the generation of CD8+ T cells in SLA-CpG-DCs vaccinated mice. CXCL10 also contributed towards the generation of perforin and granzyme B, two important cytolytic mediators of CD8+ T cells, following SLA-CpG-DCs vaccination. Together, these findings strongly demonstrate that CXCL10 is critical for rendering a protective cellular immunity during SLA-CpG-DC vaccination that confers protection against Leishmania donovani infection.  相似文献   
89.
R Majumdar  RR Dighe 《PloS one》2012,7(7):e40291
The mechanism by which the hinge regions of glycoprotein hormone receptors couple hormone binding to activation of downstream effecters is not clearly understood. In the present study, agonistic (311.62) and antagonistic (311.87) monoclonal antibodies (MAbs) directed against the TSH receptor extracellular domain were used to elucidate role of the hinge region in receptor activation. MAb 311.62 which identifies the LRR/Cb-2 junction (aa 265-275), increased the affinity of TSHR for the hormone while concomitantly decreasing its efficacy, whereas MAb 311.87 recognizing LRR 7-9 (aa 201-259) acted as a non-competitive inhibitor of Thyroid stimulating hormone (TSH) binding. Binding of MAbs was sensitive to the conformational changes caused by the activating and inactivating mutations and exhibited differential effects on hormone binding and response of these mutants. By studying the effects of these MAbs on truncation and chimeric mutants of thyroid stimulating hormone receptor (TSHR), this study confirms the tethered inverse agonistic role played by the hinge region and maps the interactions between TSHR hinge region and exoloops responsible for maintenance of the receptor in its basal state. Mechanistic studies on the antibody-receptor interactions suggest that MAb 311.87 is an allosteric insurmountable antagonist and inhibits initiation of the hormone induced conformational changes in the hinge region, whereas MAb 311.62 acts as a partial agonist that recognizes a conformational epitope critical for coupling of hormone binding to receptor activation. The hinge region, probably in close proximity with the α-subunit in the hormone-receptor complex, acts as a tunable switch between hormone binding and receptor activation.  相似文献   
90.
Information from exogenous donor DNA can be introduced into the genome via homology-directed repair (HDR) pathways. These pathways are stimulated by double strand breaks and by DNA damage such as interstrand cross-links. We have employed triple helix-forming oligonucleotides linked to psoralen (pso-TFO) to introduce a DNA interstrand cross-link at a specific site in the genome of living mammalian cells. Co-introduction of duplex DNA with target region homology resulted in precise knock in of the donor at frequencies 2-3 orders of magnitude greater than with donor alone. Knock-in was eliminated in cells deficient in ERCC1-XPF, which is involved in recombinational pathways as well as cross-link repair. Separately, single strand oligonucleotide donors (SSO) were co-introduced with the pso-TFO. These were 10-fold more active than the duplex knock-in donor. SSO efficacy was further elevated in cells deficient in ERCC1-XPF, in contrast to the duplex donor. Resected single strand ends have been implicated as critical intermediates in sequence modulation by SSO, as well as duplex donor knock in. We asked whether there would be a competition between the donor species for these ends if both were present with the pso-TFO. The frequency of duplex donor knock in was unaffected by a 100-fold molar excess of the SSO. The same result was obtained when the homing endonuclease I-SceI was used to initiate HDR at the target site. We conclude that the entry of double strand breaks into distinct HDR pathways is controlled by factors other than the nucleic acid partners in those pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号